Properties

Label 12.0.53981860730241024.4
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 3^{6}\cdot 7^{10}$
Root discriminant $24.79$
Ramified primes $2, 3, 7$
Class number $14$
Class group $[14]$
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3361, -2432, 2776, -844, 496, -82, 174, -88, 38, 4, 1, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + x^10 + 4*x^9 + 38*x^8 - 88*x^7 + 174*x^6 - 82*x^5 + 496*x^4 - 844*x^3 + 2776*x^2 - 2432*x + 3361)
 
gp: K = bnfinit(x^12 - 2*x^11 + x^10 + 4*x^9 + 38*x^8 - 88*x^7 + 174*x^6 - 82*x^5 + 496*x^4 - 844*x^3 + 2776*x^2 - 2432*x + 3361, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + x^{10} + 4 x^{9} + 38 x^{8} - 88 x^{7} + 174 x^{6} - 82 x^{5} + 496 x^{4} - 844 x^{3} + 2776 x^{2} - 2432 x + 3361 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53981860730241024=2^{18}\cdot 3^{6}\cdot 7^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(168=2^{3}\cdot 3\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(67,·)$, $\chi_{168}(131,·)$, $\chi_{168}(163,·)$, $\chi_{168}(41,·)$, $\chi_{168}(43,·)$, $\chi_{168}(17,·)$, $\chi_{168}(83,·)$, $\chi_{168}(25,·)$, $\chi_{168}(89,·)$, $\chi_{168}(121,·)$, $\chi_{168}(59,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{23166795342939893} a^{11} - \frac{8365906059134419}{23166795342939893} a^{10} - \frac{442181154700153}{23166795342939893} a^{9} + \frac{1599512258232874}{23166795342939893} a^{8} + \frac{11452426457752406}{23166795342939893} a^{7} + \frac{472796573147095}{23166795342939893} a^{6} - \frac{4485932719354127}{23166795342939893} a^{5} - \frac{6174202990064083}{23166795342939893} a^{4} + \frac{3187902591499734}{23166795342939893} a^{3} + \frac{1072443427839741}{23166795342939893} a^{2} - \frac{6566079270477433}{23166795342939893} a - \frac{10186876040919075}{23166795342939893}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{14}$, which has order $14$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 140.798796005 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\zeta_{21})^+\), 6.0.232339968.1, 6.0.1229312.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.18.15$x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
$3$3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$