Normalized defining polynomial
\( x^{12} - x^{11} + 143 x^{10} - 41 x^{9} + 8623 x^{8} + 2028 x^{7} + 280434 x^{6} + 136924 x^{5} + 5232016 x^{4} + 2217128 x^{3} + 53594968 x^{2} + 12100257 x + 236593391 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53483214216056720703125=5^{9}\cdot 7^{8}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1435=5\cdot 7\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1435}(1,·)$, $\chi_{1435}(1026,·)$, $\chi_{1435}(739,·)$, $\chi_{1435}(737,·)$, $\chi_{1435}(1352,·)$, $\chi_{1435}(778,·)$, $\chi_{1435}(942,·)$, $\chi_{1435}(368,·)$, $\chi_{1435}(163,·)$, $\chi_{1435}(821,·)$, $\chi_{1435}(534,·)$, $\chi_{1435}(1149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{131} a^{9} + \frac{30}{131} a^{8} - \frac{31}{131} a^{7} - \frac{31}{131} a^{6} - \frac{21}{131} a^{5} + \frac{56}{131} a^{4} - \frac{51}{131} a^{3} + \frac{32}{131} a^{2} - \frac{42}{131} a - \frac{6}{131}$, $\frac{1}{131} a^{10} - \frac{14}{131} a^{8} - \frac{18}{131} a^{7} - \frac{8}{131} a^{6} + \frac{31}{131} a^{5} - \frac{28}{131} a^{4} - \frac{10}{131} a^{3} + \frac{46}{131} a^{2} - \frac{56}{131} a + \frac{49}{131}$, $\frac{1}{127792074940964081489684316424421} a^{11} - \frac{214584703044963069896769205499}{127792074940964081489684316424421} a^{10} - \frac{299542511127706209553069808354}{127792074940964081489684316424421} a^{9} + \frac{19208061633403008045535982757779}{127792074940964081489684316424421} a^{8} - \frac{46023543781733271239575654660917}{127792074940964081489684316424421} a^{7} + \frac{30072602105700121081420638503895}{127792074940964081489684316424421} a^{6} + \frac{15365392398087512689865026229743}{127792074940964081489684316424421} a^{5} + \frac{20626597036007386822248821632508}{127792074940964081489684316424421} a^{4} - \frac{40626672019148579955304827735707}{127792074940964081489684316424421} a^{3} + \frac{21814061365780918567079427082490}{127792074940964081489684316424421} a^{2} + \frac{42465060521591389537938109487846}{127792074940964081489684316424421} a + \frac{2542750945359639029009387878595}{127792074940964081489684316424421}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{436}$, which has order $13952$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.210125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $41$ | 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |