Normalized defining polynomial
\( x^{12} - 2 x^{11} - x^{10} + 10 x^{9} + 13 x^{8} - 42 x^{7} - 6 x^{6} + 50 x^{5} + 45 x^{4} - 24 x^{3} + \cdots + 9 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(533794816000000\) \(\medspace = 2^{18}\cdot 5^{6}\cdot 19^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(16.88\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{1/2}19^{2/3}\approx 45.0331572624958$ | ||
Ramified primes: | \(2\), \(5\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{21}a^{9}+\frac{1}{7}a^{8}+\frac{3}{7}a^{7}-\frac{8}{21}a^{6}-\frac{2}{7}a^{5}-\frac{2}{21}a^{4}-\frac{1}{21}a^{3}+\frac{1}{3}a^{2}-\frac{8}{21}a-\frac{3}{7}$, $\frac{1}{21}a^{10}+\frac{1}{3}a^{7}-\frac{1}{7}a^{6}-\frac{5}{21}a^{5}+\frac{5}{21}a^{4}+\frac{10}{21}a^{3}-\frac{8}{21}a^{2}-\frac{2}{7}a+\frac{2}{7}$, $\frac{1}{7240989}a^{11}+\frac{77761}{7240989}a^{10}+\frac{629}{344809}a^{9}+\frac{145699}{1034427}a^{8}-\frac{1647572}{7240989}a^{7}+\frac{1228270}{7240989}a^{6}-\frac{641965}{2413663}a^{5}+\frac{13267}{344809}a^{4}-\frac{9673}{1034427}a^{3}-\frac{2935559}{7240989}a^{2}-\frac{59788}{2413663}a+\frac{110316}{2413663}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{15298}{7240989}a^{11}-\frac{3272}{7240989}a^{10}+\frac{13208}{7240989}a^{9}+\frac{60673}{7240989}a^{8}+\frac{291826}{7240989}a^{7}+\frac{132541}{2413663}a^{6}+\frac{69368}{2413663}a^{5}-\frac{54163}{7240989}a^{4}-\frac{12214}{2413663}a^{3}+\frac{29129}{2413663}a^{2}+\frac{79550}{7240989}a+\frac{1498158}{2413663}$, $\frac{131638}{7240989}a^{11}-\frac{243961}{2413663}a^{10}+\frac{46142}{344809}a^{9}+\frac{213955}{1034427}a^{8}-\frac{1131357}{2413663}a^{7}-\frac{1350035}{1034427}a^{6}+\frac{20884589}{7240989}a^{5}+\frac{1038217}{7240989}a^{4}-\frac{18647654}{7240989}a^{3}-\frac{2602350}{2413663}a^{2}+\frac{1961535}{2413663}a-\frac{198236}{2413663}$, $\frac{344536}{2413663}a^{11}-\frac{885022}{2413663}a^{10}+\frac{186842}{2413663}a^{9}+\frac{3278164}{2413663}a^{8}+\frac{2569883}{2413663}a^{7}-\frac{15679767}{2413663}a^{6}+\frac{7176599}{2413663}a^{5}+\frac{11866584}{2413663}a^{4}+\frac{7796024}{2413663}a^{3}-\frac{12686442}{2413663}a^{2}+\frac{2417157}{2413663}a+\frac{2404817}{2413663}$, $\frac{555656}{7240989}a^{11}-\frac{1028810}{7240989}a^{10}-\frac{978697}{7240989}a^{9}+\frac{6073847}{7240989}a^{8}+\frac{1153540}{1034427}a^{7}-\frac{24856424}{7240989}a^{6}-\frac{9346732}{7240989}a^{5}+\frac{13239293}{2413663}a^{4}+\frac{24981676}{7240989}a^{3}-\frac{8137315}{2413663}a^{2}-\frac{6261559}{7240989}a+\frac{4844265}{2413663}$, $\frac{33541}{1034427}a^{11}-\frac{19834}{7240989}a^{10}-\frac{1289899}{7240989}a^{9}+\frac{2249269}{7240989}a^{8}+\frac{7212992}{7240989}a^{7}-\frac{1795074}{2413663}a^{6}-\frac{20516294}{7240989}a^{5}+\frac{13033870}{7240989}a^{4}+\frac{3265513}{1034427}a^{3}+\frac{14860156}{7240989}a^{2}+\frac{1946174}{7240989}a-\frac{36423}{344809}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 208.6593719011262 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 208.6593719011262 \cdot 1}{2\cdot\sqrt{533794816000000}}\cr\approx \mathstrut & 0.277843303717387 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 12T18):
A solvable group of order 36 |
The 18 conjugacy class representatives for $C_6\times S_3$ |
Character table for $C_6\times S_3$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{5})\), 6.0.184832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 36 |
Degree 18 siblings: | 18.6.1133217238561874432000000000.2, 18.0.580207226143679709184000000000.2 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/7.2.0.1}{2} }^{6}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.18.15 | $x^{12} - 12 x^{11} - 56 x^{9} + 2372 x^{8} + 8992 x^{7} + 115648 x^{6} + 164160 x^{5} + 1305648 x^{4} - 282560 x^{3} + 5591296 x^{2} - 9640320 x + 8497856$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
\(5\) | 5.12.6.1 | $x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
\(19\) | 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
19.3.0.1 | $x^{3} + 4 x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
19.3.0.1 | $x^{3} + 4 x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.40.2t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{-10}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.760.6t1.b.a | $1$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.0.8340544000.3 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.95.6t1.a.a | $1$ | $ 5 \cdot 19 $ | 6.6.16290125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.95.6t1.a.b | $1$ | $ 5 \cdot 19 $ | 6.6.16290125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.152.6t1.c.a | $1$ | $ 2^{3} \cdot 19 $ | 6.0.66724352.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.760.6t1.b.b | $1$ | $ 2^{3} \cdot 5 \cdot 19 $ | 6.0.8340544000.3 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.152.6t1.c.b | $1$ | $ 2^{3} \cdot 19 $ | 6.0.66724352.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
2.2888.3t2.b.a | $2$ | $ 2^{3} \cdot 19^{2}$ | 3.1.2888.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.72200.6t3.c.a | $2$ | $ 2^{3} \cdot 5^{2} \cdot 19^{2}$ | 6.2.1042568000.4 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.152.6t5.a.a | $2$ | $ 2^{3} \cdot 19 $ | 6.0.184832.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.152.6t5.a.b | $2$ | $ 2^{3} \cdot 19 $ | 6.0.184832.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.3800.12t18.d.a | $2$ | $ 2^{3} \cdot 5^{2} \cdot 19 $ | 12.0.533794816000000.1 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.3800.12t18.d.b | $2$ | $ 2^{3} \cdot 5^{2} \cdot 19 $ | 12.0.533794816000000.1 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |