Properties

Label 12.0.533794816000000.1
Degree $12$
Signature $[0, 6]$
Discriminant $5.338\times 10^{14}$
Root discriminant \(16.88\)
Ramified primes $2,5,19$
Class number $1$
Class group trivial
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9)
 
gp: K = bnfinit(y^12 - 2*y^11 - y^10 + 10*y^9 + 13*y^8 - 42*y^7 - 6*y^6 + 50*y^5 + 45*y^4 - 24*y^3 - 16*y^2 + 12*y + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9)
 

\( x^{12} - 2 x^{11} - x^{10} + 10 x^{9} + 13 x^{8} - 42 x^{7} - 6 x^{6} + 50 x^{5} + 45 x^{4} - 24 x^{3} + \cdots + 9 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(533794816000000\) \(\medspace = 2^{18}\cdot 5^{6}\cdot 19^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(16.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{1/2}19^{2/3}\approx 45.0331572624958$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{21}a^{9}+\frac{1}{7}a^{8}+\frac{3}{7}a^{7}-\frac{8}{21}a^{6}-\frac{2}{7}a^{5}-\frac{2}{21}a^{4}-\frac{1}{21}a^{3}+\frac{1}{3}a^{2}-\frac{8}{21}a-\frac{3}{7}$, $\frac{1}{21}a^{10}+\frac{1}{3}a^{7}-\frac{1}{7}a^{6}-\frac{5}{21}a^{5}+\frac{5}{21}a^{4}+\frac{10}{21}a^{3}-\frac{8}{21}a^{2}-\frac{2}{7}a+\frac{2}{7}$, $\frac{1}{7240989}a^{11}+\frac{77761}{7240989}a^{10}+\frac{629}{344809}a^{9}+\frac{145699}{1034427}a^{8}-\frac{1647572}{7240989}a^{7}+\frac{1228270}{7240989}a^{6}-\frac{641965}{2413663}a^{5}+\frac{13267}{344809}a^{4}-\frac{9673}{1034427}a^{3}-\frac{2935559}{7240989}a^{2}-\frac{59788}{2413663}a+\frac{110316}{2413663}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{15298}{7240989}a^{11}-\frac{3272}{7240989}a^{10}+\frac{13208}{7240989}a^{9}+\frac{60673}{7240989}a^{8}+\frac{291826}{7240989}a^{7}+\frac{132541}{2413663}a^{6}+\frac{69368}{2413663}a^{5}-\frac{54163}{7240989}a^{4}-\frac{12214}{2413663}a^{3}+\frac{29129}{2413663}a^{2}+\frac{79550}{7240989}a+\frac{1498158}{2413663}$, $\frac{131638}{7240989}a^{11}-\frac{243961}{2413663}a^{10}+\frac{46142}{344809}a^{9}+\frac{213955}{1034427}a^{8}-\frac{1131357}{2413663}a^{7}-\frac{1350035}{1034427}a^{6}+\frac{20884589}{7240989}a^{5}+\frac{1038217}{7240989}a^{4}-\frac{18647654}{7240989}a^{3}-\frac{2602350}{2413663}a^{2}+\frac{1961535}{2413663}a-\frac{198236}{2413663}$, $\frac{344536}{2413663}a^{11}-\frac{885022}{2413663}a^{10}+\frac{186842}{2413663}a^{9}+\frac{3278164}{2413663}a^{8}+\frac{2569883}{2413663}a^{7}-\frac{15679767}{2413663}a^{6}+\frac{7176599}{2413663}a^{5}+\frac{11866584}{2413663}a^{4}+\frac{7796024}{2413663}a^{3}-\frac{12686442}{2413663}a^{2}+\frac{2417157}{2413663}a+\frac{2404817}{2413663}$, $\frac{555656}{7240989}a^{11}-\frac{1028810}{7240989}a^{10}-\frac{978697}{7240989}a^{9}+\frac{6073847}{7240989}a^{8}+\frac{1153540}{1034427}a^{7}-\frac{24856424}{7240989}a^{6}-\frac{9346732}{7240989}a^{5}+\frac{13239293}{2413663}a^{4}+\frac{24981676}{7240989}a^{3}-\frac{8137315}{2413663}a^{2}-\frac{6261559}{7240989}a+\frac{4844265}{2413663}$, $\frac{33541}{1034427}a^{11}-\frac{19834}{7240989}a^{10}-\frac{1289899}{7240989}a^{9}+\frac{2249269}{7240989}a^{8}+\frac{7212992}{7240989}a^{7}-\frac{1795074}{2413663}a^{6}-\frac{20516294}{7240989}a^{5}+\frac{13033870}{7240989}a^{4}+\frac{3265513}{1034427}a^{3}+\frac{14860156}{7240989}a^{2}+\frac{1946174}{7240989}a-\frac{36423}{344809}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 208.6593719011262 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 208.6593719011262 \cdot 1}{2\cdot\sqrt{533794816000000}}\cr\approx \mathstrut & 0.277843303717387 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 - x^10 + 10*x^9 + 13*x^8 - 42*x^7 - 6*x^6 + 50*x^5 + 45*x^4 - 24*x^3 - 16*x^2 + 12*x + 9);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{5})\), 6.0.184832.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: 18.6.1133217238561874432000000000.2, 18.0.580207226143679709184000000000.2
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{3}$ R ${\href{/padicField/7.2.0.1}{2} }^{6}$ ${\href{/padicField/11.3.0.1}{3} }^{4}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ R ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.2.0.1}{2} }^{6}$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.18.15$x^{12} - 12 x^{11} - 56 x^{9} + 2372 x^{8} + 8992 x^{7} + 115648 x^{6} + 164160 x^{5} + 1305648 x^{4} - 282560 x^{3} + 5591296 x^{2} - 9640320 x + 8497856$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(19\) Copy content Toggle raw display 19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.0.1$x^{3} + 4 x + 17$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.0.1$x^{3} + 4 x + 17$$1$$3$$0$$C_3$$[\ ]^{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.40.2t1.b.a$1$ $ 2^{3} \cdot 5 $ \(\Q(\sqrt{-10}) \) $C_2$ (as 2T1) $1$ $-1$
1.760.6t1.b.a$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.95.6t1.a.a$1$ $ 5 \cdot 19 $ 6.6.16290125.1 $C_6$ (as 6T1) $0$ $1$
1.95.6t1.a.b$1$ $ 5 \cdot 19 $ 6.6.16290125.1 $C_6$ (as 6T1) $0$ $1$
1.152.6t1.c.a$1$ $ 2^{3} \cdot 19 $ 6.0.66724352.1 $C_6$ (as 6T1) $0$ $-1$
1.760.6t1.b.b$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.152.6t1.c.b$1$ $ 2^{3} \cdot 19 $ 6.0.66724352.1 $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.a.a$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.19.3t1.a.b$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
2.2888.3t2.b.a$2$ $ 2^{3} \cdot 19^{2}$ 3.1.2888.1 $S_3$ (as 3T2) $1$ $0$
2.72200.6t3.c.a$2$ $ 2^{3} \cdot 5^{2} \cdot 19^{2}$ 6.2.1042568000.4 $D_{6}$ (as 6T3) $1$ $0$
* 2.152.6t5.a.a$2$ $ 2^{3} \cdot 19 $ 6.0.184832.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.152.6t5.a.b$2$ $ 2^{3} \cdot 19 $ 6.0.184832.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3800.12t18.d.a$2$ $ 2^{3} \cdot 5^{2} \cdot 19 $ 12.0.533794816000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.3800.12t18.d.b$2$ $ 2^{3} \cdot 5^{2} \cdot 19 $ 12.0.533794816000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.