Normalized defining polynomial
\( x^{12} - 2 x^{11} + 39 x^{10} - 64 x^{9} + 999 x^{8} - 1282 x^{7} + 17923 x^{6} - 16158 x^{5} + 209715 x^{4} - 125512 x^{3} + 1468591 x^{2} - 476098 x + 4495807 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5317553698152529526784=2^{18}\cdot 3^{6}\cdot 7^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2184=2^{3}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2184}(1,·)$, $\chi_{2184}(389,·)$, $\chi_{2184}(1793,·)$, $\chi_{2184}(1481,·)$, $\chi_{2184}(781,·)$, $\chi_{2184}(1325,·)$, $\chi_{2184}(625,·)$, $\chi_{2184}(1717,·)$, $\chi_{2184}(233,·)$, $\chi_{2184}(701,·)$, $\chi_{2184}(1873,·)$, $\chi_{2184}(1093,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{47} a^{9} + \frac{22}{47} a^{8} + \frac{17}{47} a^{7} - \frac{12}{47} a^{6} + \frac{18}{47} a^{5} + \frac{8}{47} a^{4} + \frac{15}{47} a^{3} - \frac{2}{47} a^{2} + \frac{21}{47} a - \frac{12}{47}$, $\frac{1}{159118171} a^{10} - \frac{838384}{159118171} a^{9} - \frac{1624702}{3385493} a^{8} + \frac{47247667}{159118171} a^{7} - \frac{38949911}{159118171} a^{6} + \frac{25907364}{159118171} a^{5} + \frac{32041024}{159118171} a^{4} + \frac{16510187}{159118171} a^{3} + \frac{70814021}{159118171} a^{2} - \frac{59110452}{159118171} a - \frac{5415147}{159118171}$, $\frac{1}{2545831117762807891} a^{11} + \frac{3786296789}{2545831117762807891} a^{10} + \frac{134360751965854}{54166619526868253} a^{9} - \frac{592404561714159196}{2545831117762807891} a^{8} + \frac{680251002699530249}{2545831117762807891} a^{7} - \frac{782455742633123587}{2545831117762807891} a^{6} + \frac{773038449101347817}{2545831117762807891} a^{5} - \frac{1010232113507725061}{2545831117762807891} a^{4} + \frac{1187984883566733720}{2545831117762807891} a^{3} - \frac{2878070996528589}{35856776306518421} a^{2} - \frac{52708691537045098}{2545831117762807891} a + \frac{878956768105222991}{2545831117762807891}$
Class group and class number
$C_{4}\times C_{4}\times C_{152}$, which has order $2432$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.1500271937239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-39})\), 6.0.72921558528.9, 6.0.142424919.1, 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |