Normalized defining polynomial
\( x^{12} - x^{11} + 99 x^{10} - 71 x^{9} + 3536 x^{8} - 1548 x^{7} + 55630 x^{6} - 5985 x^{5} + 377279 x^{4} + 187264 x^{3} + 822528 x^{2} + 1079414 x + 1930411 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(528345816354901963089=3^{6}\cdot 7^{10}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(777=3\cdot 7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{777}(1,·)$, $\chi_{777}(482,·)$, $\chi_{777}(667,·)$, $\chi_{777}(517,·)$, $\chi_{777}(38,·)$, $\chi_{777}(73,·)$, $\chi_{777}(554,·)$, $\chi_{777}(221,·)$, $\chi_{777}(593,·)$, $\chi_{777}(628,·)$, $\chi_{777}(443,·)$, $\chi_{777}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{1261} a^{7} + \frac{63}{1261} a^{5} - \frac{127}{1261} a^{3} + \frac{59}{1261} a - \frac{2}{1261}$, $\frac{1}{1261} a^{8} + \frac{63}{1261} a^{6} - \frac{127}{1261} a^{4} + \frac{59}{1261} a^{2} - \frac{2}{1261} a$, $\frac{1}{12610} a^{9} + \frac{1}{12610} a^{7} - \frac{1}{10} a^{6} - \frac{4033}{12610} a^{5} - \frac{2}{5} a^{4} + \frac{5411}{12610} a^{3} + \frac{3781}{12610} a^{2} + \frac{693}{6305} a - \frac{3659}{12610}$, $\frac{1}{56096303770} a^{10} + \frac{188501}{56096303770} a^{9} - \frac{19026119}{56096303770} a^{8} + \frac{2197498}{5609630377} a^{7} - \frac{12692391087}{28048151885} a^{6} - \frac{6988670367}{56096303770} a^{5} - \frac{18807119433}{56096303770} a^{4} - \frac{10711650384}{28048151885} a^{3} - \frac{11337542533}{56096303770} a^{2} - \frac{9111670093}{56096303770} a - \frac{12701148999}{56096303770}$, $\frac{1}{56096303770} a^{11} + \frac{607212}{28048151885} a^{9} - \frac{6706371}{56096303770} a^{8} - \frac{647902}{5609630377} a^{7} - \frac{23961404267}{56096303770} a^{6} + \frac{10898995646}{28048151885} a^{5} + \frac{12354884019}{56096303770} a^{4} + \frac{8075994379}{56096303770} a^{3} - \frac{7939357183}{28048151885} a^{2} + \frac{3565216714}{28048151885} a + \frac{26419332813}{56096303770}$
Class group and class number
$C_{6}\times C_{168}$, which has order $1008$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-259}) \), \(\Q(\sqrt{-111}) \), \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-111})\), 6.0.851324971.1, 6.0.3283682031.3, \(\Q(\zeta_{21})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |