Properties

Label 12.0.5231045973904.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{4}\cdot 83^{6}$
Root discriminant $11.48$
Ramified primes $2, 83$
Class number $1$
Class group Trivial
Galois Group $C_2\times S_4$ (as 12T21)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, -24, 28, -14, 21, -26, 39, -39, 38, -27, 15, -5, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 5*x^11 + 15*x^10 - 27*x^9 + 38*x^8 - 39*x^7 + 39*x^6 - 26*x^5 + 21*x^4 - 14*x^3 + 28*x^2 - 24*x + 16)
gp: K = bnfinit(x^12 - 5*x^11 + 15*x^10 - 27*x^9 + 38*x^8 - 39*x^7 + 39*x^6 - 26*x^5 + 21*x^4 - 14*x^3 + 28*x^2 - 24*x + 16, 1)

Normalized defining polynomial

\(x^{12} \) \(\mathstrut -\mathstrut 5 x^{11} \) \(\mathstrut +\mathstrut 15 x^{10} \) \(\mathstrut -\mathstrut 27 x^{9} \) \(\mathstrut +\mathstrut 38 x^{8} \) \(\mathstrut -\mathstrut 39 x^{7} \) \(\mathstrut +\mathstrut 39 x^{6} \) \(\mathstrut -\mathstrut 26 x^{5} \) \(\mathstrut +\mathstrut 21 x^{4} \) \(\mathstrut -\mathstrut 14 x^{3} \) \(\mathstrut +\mathstrut 28 x^{2} \) \(\mathstrut -\mathstrut 24 x \) \(\mathstrut +\mathstrut 16 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $12$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 6]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(5231045973904=2^{4}\cdot 83^{6}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $11.48$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 83$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{2392} a^{11} + \frac{175}{2392} a^{10} + \frac{419}{2392} a^{9} - \frac{1151}{2392} a^{8} + \frac{37}{92} a^{7} + \frac{3}{8} a^{6} - \frac{89}{184} a^{5} - \frac{7}{92} a^{4} + \frac{749}{2392} a^{3} + \frac{427}{1196} a^{2} + \frac{165}{598} a - \frac{103}{299}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $5$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 23.2959616796 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$C_2\times S_4$ (as 12T21):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 48
The 10 conjugacy class representatives for $C_2\times S_4$
Character table for $C_2\times S_4$

Intermediate fields

\(\Q(\sqrt{-83}) \), 3.1.83.1 x3, 6.2.2287148.1, 6.0.27556.1, 6.0.571787.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed
Degree 8 siblings: data not computed
Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
$83$83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$
83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$
83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$
83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$
83.4.2.1$x^{4} + 249 x^{2} + 27556$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$