Properties

Label 12.0.51144017555...504.16
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 3^{6}\cdot 7^{10}\cdot 23^{6}$
Root discriminant $168.16$
Ramified primes $2, 3, 7, 23$
Class number $1312416$ (GRH)
Class group $[2, 6, 109368]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![107918163081, 0, 37536752376, 0, 1949372406, 0, 34164936, 0, 252333, 0, 828, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 828*x^10 + 252333*x^8 + 34164936*x^6 + 1949372406*x^4 + 37536752376*x^2 + 107918163081)
 
gp: K = bnfinit(x^12 + 828*x^10 + 252333*x^8 + 34164936*x^6 + 1949372406*x^4 + 37536752376*x^2 + 107918163081, 1)
 

Normalized defining polynomial

\( x^{12} + 828 x^{10} + 252333 x^{8} + 34164936 x^{6} + 1949372406 x^{4} + 37536752376 x^{2} + 107918163081 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(511440175556826827015061504=2^{24}\cdot 3^{6}\cdot 7^{10}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $168.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3864=2^{3}\cdot 3\cdot 7\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{3864}(1,·)$, $\chi_{3864}(3035,·)$, $\chi_{3864}(965,·)$, $\chi_{3864}(2209,·)$, $\chi_{3864}(1517,·)$, $\chi_{3864}(3727,·)$, $\chi_{3864}(3313,·)$, $\chi_{3864}(275,·)$, $\chi_{3864}(2071,·)$, $\chi_{3864}(827,·)$, $\chi_{3864}(2621,·)$, $\chi_{3864}(2623,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{69} a^{2}$, $\frac{1}{69} a^{3}$, $\frac{1}{4761} a^{4}$, $\frac{1}{4761} a^{5}$, $\frac{1}{328509} a^{6}$, $\frac{1}{328509} a^{7}$, $\frac{1}{22667121} a^{8}$, $\frac{1}{22667121} a^{9}$, $\frac{1}{1564031349} a^{10}$, $\frac{1}{1564031349} a^{11}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{109368}$, which has order $1312416$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 246.50546308257188 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-138}) \), \(\Q(\sqrt{-966}) \), \(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{7}, \sqrt{-138})\), 6.0.403840055808.5, 6.0.2826880390656.6, \(\Q(\zeta_{28})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.24.315$x^{12} + 32 x^{11} - 10 x^{10} + 8 x^{9} - 18 x^{8} + 32 x^{7} + 20 x^{6} + 24 x^{5} - 24 x^{4} + 32 x^{3} + 16 x^{2} - 24$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
$23$23.12.6.1$x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$