Normalized defining polynomial
\( x^{12} - 4 x^{11} + 11 x^{10} - 21 x^{9} + 32 x^{8} - 40 x^{7} + 45 x^{6} - 46 x^{5} + 40 x^{4} - 26 x^{3} + 12 x^{2} - 4 x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(50551744653\)\(\medspace = 3^{6}\cdot 37^{5}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $7.80$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 37$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $6$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{37} a^{11} - \frac{16}{37} a^{10} + \frac{18}{37} a^{9} - \frac{15}{37} a^{8} - \frac{10}{37} a^{7} + \frac{6}{37} a^{6} + \frac{10}{37} a^{5} - \frac{18}{37} a^{4} - \frac{3}{37} a^{3} + \frac{10}{37} a^{2} + \frac{3}{37} a - \frac{3}{37}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{43}{37} a^{11} + \frac{133}{37} a^{10} - \frac{330}{37} a^{9} + \frac{534}{37} a^{8} - \frac{717}{37} a^{7} + \frac{778}{37} a^{6} - \frac{837}{37} a^{5} + \frac{774}{37} a^{4} - \frac{537}{37} a^{3} + \frac{162}{37} a^{2} - \frac{18}{37} a + \frac{18}{37} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 3.95685086216 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_3\times C_3:D_4$ (as 12T42):
A solvable group of order 72 |
The 27 conjugacy class representatives for $C_3\times C_3:D_4$ |
Character table for $C_3\times C_3:D_4$ is not computed |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.333.1, 6.0.36963.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 24 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
$37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |