Properties

Label 12.0.50551744653.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{6}\cdot 37^{5}$
Root discriminant $7.80$
Ramified primes $3, 37$
Class number $1$
Class group Trivial
Galois group $C_3\times C_3:D_4$ (as 12T42)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 12, -26, 40, -46, 45, -40, 32, -21, 11, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 11*x^10 - 21*x^9 + 32*x^8 - 40*x^7 + 45*x^6 - 46*x^5 + 40*x^4 - 26*x^3 + 12*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^12 - 4*x^11 + 11*x^10 - 21*x^9 + 32*x^8 - 40*x^7 + 45*x^6 - 46*x^5 + 40*x^4 - 26*x^3 + 12*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 11 x^{10} - 21 x^{9} + 32 x^{8} - 40 x^{7} + 45 x^{6} - 46 x^{5} + 40 x^{4} - 26 x^{3} + 12 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(50551744653=3^{6}\cdot 37^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $7.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{37} a^{11} - \frac{16}{37} a^{10} + \frac{18}{37} a^{9} - \frac{15}{37} a^{8} - \frac{10}{37} a^{7} + \frac{6}{37} a^{6} + \frac{10}{37} a^{5} - \frac{18}{37} a^{4} - \frac{3}{37} a^{3} + \frac{10}{37} a^{2} + \frac{3}{37} a - \frac{3}{37}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{43}{37} a^{11} + \frac{133}{37} a^{10} - \frac{330}{37} a^{9} + \frac{534}{37} a^{8} - \frac{717}{37} a^{7} + \frac{778}{37} a^{6} - \frac{837}{37} a^{5} + \frac{774}{37} a^{4} - \frac{537}{37} a^{3} + \frac{162}{37} a^{2} - \frac{18}{37} a + \frac{18}{37} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3.95685086216 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_3:D_4$ (as 12T42):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 27 conjugacy class representatives for $C_3\times C_3:D_4$
Character table for $C_3\times C_3:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.333.1, 6.0.36963.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 24 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ R ${\href{/LocalNumberField/5.12.0.1}{12} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$37$$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
37.6.5.1$x^{6} - 37$$6$$1$$5$$C_6$$[\ ]_{6}$