Normalized defining polynomial
\( x^{12} - x^{11} - 2 x^{10} + 5 x^{9} + x^{8} - 16 x^{7} + 13 x^{6} - 48 x^{5} + 9 x^{4} + 135 x^{3} - 162 x^{2} - 243 x + 729 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(500422134593689=7^{10}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(77=7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{77}(32,·)$, $\chi_{77}(1,·)$, $\chi_{77}(34,·)$, $\chi_{77}(67,·)$, $\chi_{77}(65,·)$, $\chi_{77}(12,·)$, $\chi_{77}(10,·)$, $\chi_{77}(43,·)$, $\chi_{77}(76,·)$, $\chi_{77}(45,·)$, $\chi_{77}(54,·)$, $\chi_{77}(23,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{39} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{3}{13}$, $\frac{1}{117} a^{8} - \frac{1}{117} a^{7} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{16}{39} a + \frac{1}{13}$, $\frac{1}{351} a^{9} - \frac{1}{351} a^{8} - \frac{2}{351} a^{7} - \frac{10}{27} a^{6} - \frac{2}{27} a^{5} + \frac{5}{27} a^{4} + \frac{1}{27} a^{3} - \frac{16}{117} a^{2} + \frac{1}{39} a + \frac{5}{13}$, $\frac{1}{1053} a^{10} - \frac{1}{1053} a^{9} - \frac{2}{1053} a^{8} + \frac{5}{1053} a^{7} + \frac{25}{81} a^{6} + \frac{5}{81} a^{5} + \frac{1}{81} a^{4} - \frac{16}{351} a^{3} + \frac{1}{117} a^{2} + \frac{5}{39} a - \frac{2}{13}$, $\frac{1}{3159} a^{11} - \frac{1}{3159} a^{10} - \frac{2}{3159} a^{9} + \frac{5}{3159} a^{8} + \frac{1}{3159} a^{7} - \frac{76}{243} a^{6} + \frac{1}{243} a^{5} - \frac{16}{1053} a^{4} + \frac{1}{351} a^{3} + \frac{5}{117} a^{2} - \frac{2}{39} a - \frac{1}{13}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{3159} a^{11} + \frac{2}{3159} a^{10} - \frac{5}{3159} a^{9} - \frac{1}{3159} a^{8} + \frac{16}{3159} a^{7} - \frac{1}{243} a^{6} + \frac{16}{243} a^{5} - \frac{1}{351} a^{4} - \frac{5}{117} a^{3} + \frac{2}{39} a^{2} + \frac{1}{13} a - \frac{3}{13} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 706.974937058 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-7}, \sqrt{-11})\), 6.6.22370117.1, 6.0.3195731.1, \(\Q(\zeta_{7})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |