Normalized defining polynomial
\( x^{12} - 3 x^{11} + 99 x^{10} - 291 x^{9} + 4425 x^{8} - 12288 x^{7} + 111738 x^{6} - 258864 x^{5} + 1615344 x^{4} - 2617004 x^{3} + 12629298 x^{2} - 11707065 x + 44340281 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50010143639414923828125=3^{16}\cdot 5^{9}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1305=3^{2}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1305}(1,·)$, $\chi_{1305}(898,·)$, $\chi_{1305}(1219,·)$, $\chi_{1305}(871,·)$, $\chi_{1305}(202,·)$, $\chi_{1305}(463,·)$, $\chi_{1305}(1072,·)$, $\chi_{1305}(436,·)$, $\chi_{1305}(28,·)$, $\chi_{1305}(349,·)$, $\chi_{1305}(784,·)$, $\chi_{1305}(637,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{71} a^{9} - \frac{24}{71} a^{8} + \frac{33}{71} a^{7} + \frac{19}{71} a^{6} - \frac{3}{71} a^{5} + \frac{11}{71} a^{4} + \frac{12}{71} a^{3} - \frac{13}{71} a^{2} - \frac{15}{71} a$, $\frac{1}{71} a^{10} + \frac{25}{71} a^{8} + \frac{30}{71} a^{7} + \frac{27}{71} a^{6} + \frac{10}{71} a^{5} - \frac{8}{71} a^{4} - \frac{9}{71} a^{3} + \frac{28}{71} a^{2} - \frac{5}{71} a$, $\frac{1}{1026174231742957118179038624061} a^{11} - \frac{6264205092319832767792595910}{1026174231742957118179038624061} a^{10} + \frac{4290054201436971420796085433}{1026174231742957118179038624061} a^{9} - \frac{212720481912225804563241987017}{1026174231742957118179038624061} a^{8} + \frac{282852253126721962842755213433}{1026174231742957118179038624061} a^{7} - \frac{209912200438953798073593768498}{1026174231742957118179038624061} a^{6} + \frac{312487655216926307520422447811}{1026174231742957118179038624061} a^{5} + \frac{64004133698074365223599597636}{1026174231742957118179038624061} a^{4} + \frac{482776272952299272000319550}{2858424043852248240053032379} a^{3} - \frac{313390209227616215333303967978}{1026174231742957118179038624061} a^{2} - \frac{203570266572875713151884928323}{1026174231742957118179038624061} a - \frac{84533905521769782368571468}{760692536503304016441096089}$
Class group and class number
$C_{2}\times C_{5378}$, which has order $10756$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.105125.2, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |