Normalized defining polynomial
\( x^{12} - x^{11} + 44 x^{10} - 31 x^{9} + 691 x^{8} - 288 x^{7} + 4745 x^{6} - 300 x^{5} + 13879 x^{4} + 9649 x^{3} + 10628 x^{2} + 20959 x + 41581 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4970515778063137449=3^{6}\cdot 7^{10}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(357=3\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{357}(256,·)$, $\chi_{357}(1,·)$, $\chi_{357}(290,·)$, $\chi_{357}(220,·)$, $\chi_{357}(205,·)$, $\chi_{357}(271,·)$, $\chi_{357}(305,·)$, $\chi_{357}(50,·)$, $\chi_{357}(341,·)$, $\chi_{357}(118,·)$, $\chi_{357}(188,·)$, $\chi_{357}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{181} a^{7} + \frac{28}{181} a^{5} + \frac{43}{181} a^{3} + \frac{86}{181} a + \frac{79}{181}$, $\frac{1}{181} a^{8} + \frac{28}{181} a^{6} + \frac{43}{181} a^{4} + \frac{86}{181} a^{2} + \frac{79}{181} a$, $\frac{1}{905} a^{9} + \frac{1}{905} a^{7} - \frac{1}{5} a^{6} + \frac{192}{905} a^{5} + \frac{1}{5} a^{4} + \frac{11}{905} a^{3} + \frac{441}{905} a^{2} + \frac{31}{905} a + \frac{401}{905}$, $\frac{1}{91909085} a^{10} + \frac{12312}{91909085} a^{9} - \frac{43999}{91909085} a^{8} - \frac{240709}{91909085} a^{7} + \frac{8642838}{18381817} a^{6} + \frac{2425504}{18381817} a^{5} - \frac{12286457}{91909085} a^{4} - \frac{26786422}{91909085} a^{3} - \frac{18053512}{91909085} a^{2} + \frac{27373093}{91909085} a - \frac{34760818}{91909085}$, $\frac{1}{91909085} a^{11} - \frac{4742}{91909085} a^{9} + \frac{176169}{91909085} a^{8} + \frac{25299}{91909085} a^{7} - \frac{25799801}{91909085} a^{6} - \frac{3320391}{18381817} a^{5} - \frac{5986622}{91909085} a^{4} - \frac{42373302}{91909085} a^{3} - \frac{23020182}{91909085} a^{2} + \frac{25353752}{91909085} a + \frac{21914662}{91909085}$
Class group and class number
$C_{130}$, which has order $130$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.798796005 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{-51}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-51})\), \(\Q(\zeta_{21})^+\), 6.0.82572791.1, 6.0.318495051.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |