Normalized defining polynomial
\( x^{12} - 6 x^{11} + 63 x^{10} - 260 x^{9} + 1329 x^{8} - 3822 x^{7} + 11848 x^{6} - 23193 x^{5} + 45231 x^{4} - 55779 x^{3} + 65466 x^{2} - 40878 x + 23007 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49628674637712657369=3^{18}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4251133} a^{10} - \frac{5}{4251133} a^{9} + \frac{1484993}{4251133} a^{8} - \frac{1688809}{4251133} a^{7} - \frac{1558854}{4251133} a^{6} - \frac{40460}{4251133} a^{5} + \frac{290127}{4251133} a^{4} + \frac{1059523}{4251133} a^{3} - \frac{1730120}{4251133} a^{2} - \frac{2067529}{4251133} a - \frac{780442}{4251133}$, $\frac{1}{32448898189} a^{11} + \frac{3811}{32448898189} a^{10} + \frac{11539040875}{32448898189} a^{9} - \frac{13809395794}{32448898189} a^{8} + \frac{3752414069}{32448898189} a^{7} - \frac{2126858757}{32448898189} a^{6} - \frac{1922576561}{32448898189} a^{5} + \frac{4606866614}{32448898189} a^{4} - \frac{2875183743}{32448898189} a^{3} + \frac{4355215425}{32448898189} a^{2} - \frac{3252485003}{32448898189} a + \frac{13112371733}{32448898189}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10350.3261743 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times A_4$ (as 12T25):
| A solvable group of order 48 |
| The 16 conjugacy class representatives for $C_2^2 \times A_4$ |
| Character table for $C_2^2 \times A_4$ |
Intermediate fields
| \(\Q(\sqrt{213}) \), \(\Q(\zeta_{9})^+\), 6.0.465831.1, 6.0.99222003.2, 6.6.7044762213.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.0.49628674637712657369.2, 12.0.9845005879332009.2, 12.0.1952986685049.1, 12.0.9845005879332009.1 |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 71 | Data not computed | ||||||