Normalized defining polynomial
\( x^{12} + 18 x^{10} - 28 x^{9} + 234 x^{8} - 108 x^{7} + 936 x^{6} - 36 x^{5} + 5112 x^{4} - 4456 x^{3} + 24156 x^{2} - 9504 x + 19036 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49589822592000000000=2^{16}\cdot 3^{18}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{30} a^{8} + \frac{1}{30} a^{7} - \frac{1}{15} a^{6} + \frac{1}{3} a^{5} - \frac{7}{15} a^{4} + \frac{1}{3} a^{3} - \frac{4}{15} a^{2} - \frac{4}{15} a - \frac{7}{15}$, $\frac{1}{330} a^{9} - \frac{13}{330} a^{7} + \frac{7}{330} a^{6} - \frac{24}{55} a^{5} - \frac{38}{165} a^{4} + \frac{56}{165} a^{3} + \frac{1}{11} a^{2} + \frac{7}{165} a - \frac{6}{55}$, $\frac{1}{3300} a^{10} - \frac{1}{1650} a^{9} - \frac{2}{275} a^{8} - \frac{2}{75} a^{7} - \frac{34}{825} a^{6} - \frac{74}{275} a^{5} - \frac{31}{150} a^{4} - \frac{406}{825} a^{3} + \frac{86}{275} a^{2} - \frac{104}{825} a + \frac{304}{825}$, $\frac{1}{129577123826700} a^{11} - \frac{2289232069}{129577123826700} a^{10} - \frac{49552199}{6478856191335} a^{9} + \frac{5254017917}{863847492178} a^{8} - \frac{294396097679}{12957712382670} a^{7} - \frac{1261612474879}{32394280956675} a^{6} + \frac{853023821639}{1963289754950} a^{5} - \frac{5362965258971}{12957712382670} a^{4} + \frac{2541015414823}{6478856191335} a^{3} + \frac{234911172245}{1295771238267} a^{2} + \frac{23701921868}{410054189325} a + \frac{1828384122304}{10798093652225}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}$, which has order $64$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1592.03444914 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.1620.1 x3, 4.0.18000.1, 6.6.13122000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.16.18 | $x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$ | $6$ | $2$ | $16$ | $C_3 : C_4$ | $[2]_{3}^{2}$ |
| $3$ | 3.12.18.68 | $x^{12} + 21 x^{11} - 21 x^{10} + 21 x^{9} - 27 x^{7} + 15 x^{6} + 18 x^{5} - 27 x^{4} + 27 x^{3} + 27 x^{2} + 27 x - 36$ | $6$ | $2$ | $18$ | $C_3 : C_4$ | $[2]_{2}^{2}$ |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |