Normalized defining polynomial
\( x^{12} - x^{11} - 3 x^{10} + 8 x^{9} - x^{8} - 42 x^{7} + 19 x^{6} + 93 x^{5} - 105 x^{4} - 181 x^{3} + \cdots + 173 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(48631121859501\)
\(\medspace = 3^{3}\cdot 23^{9}\)
|
| |
| Root discriminant: | \(13.82\) |
| |
| Galois root discriminant: | $3^{1/2}23^{3/4}\approx 18.19099708945548$ | ||
| Ramified primes: |
\(3\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{69}) \) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-23}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{30}a^{9}+\frac{7}{30}a^{8}-\frac{1}{3}a^{7}-\frac{1}{15}a^{6}-\frac{1}{3}a^{5}-\frac{1}{5}a^{4}-\frac{1}{30}a^{3}+\frac{1}{10}a^{2}+\frac{1}{5}a+\frac{7}{30}$, $\frac{1}{150}a^{10}+\frac{1}{150}a^{9}-\frac{26}{75}a^{8}+\frac{14}{75}a^{7}+\frac{16}{75}a^{6}-\frac{1}{25}a^{5}-\frac{1}{6}a^{4}-\frac{17}{50}a^{3}+\frac{3}{25}a^{2}+\frac{31}{150}a+\frac{8}{25}$, $\frac{1}{3927750}a^{11}+\frac{1129}{785550}a^{10}+\frac{9482}{654625}a^{9}-\frac{20047}{130925}a^{8}-\frac{90781}{654625}a^{7}-\frac{850949}{1963875}a^{6}+\frac{193361}{3927750}a^{5}-\frac{460051}{3927750}a^{4}+\frac{126429}{654625}a^{3}+\frac{1399273}{3927750}a^{2}+\frac{206006}{1963875}a+\frac{99902}{654625}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{49709}{1963875}a^{11}-\frac{2326}{26185}a^{10}+\frac{121507}{1309250}a^{9}+\frac{111323}{785550}a^{8}-\frac{1003889}{1963875}a^{7}-\frac{86464}{654625}a^{6}+\frac{1178868}{654625}a^{5}-\frac{3016684}{1963875}a^{4}-\frac{10218233}{3927750}a^{3}+\frac{13934959}{3927750}a^{2}+\frac{5396128}{1963875}a-\frac{5320039}{3927750}$, $\frac{116852}{1963875}a^{11}-\frac{46492}{392775}a^{10}-\frac{200407}{3927750}a^{9}+\frac{391297}{785550}a^{8}-\frac{1078222}{1963875}a^{7}-\frac{3620221}{1963875}a^{6}+\frac{1824899}{654625}a^{5}+\frac{5162548}{1963875}a^{4}-\frac{31913279}{3927750}a^{3}-\frac{10731683}{3927750}a^{2}+\frac{29488724}{1963875}a+\frac{44328923}{3927750}$, $\frac{13313}{157110}a^{11}-\frac{43829}{261850}a^{10}-\frac{24479}{261850}a^{9}+\frac{588589}{785550}a^{8}-\frac{316838}{392775}a^{7}-\frac{360274}{130925}a^{6}+\frac{1091229}{261850}a^{5}+\frac{630503}{157110}a^{4}-\frac{9887573}{785550}a^{3}-\frac{1371418}{392775}a^{2}+\frac{9141964}{392775}a+\frac{12495419}{785550}$, $\frac{223202}{1963875}a^{11}-\frac{9281}{52370}a^{10}-\frac{505081}{1963875}a^{9}+\frac{862159}{785550}a^{8}-\frac{1505992}{1963875}a^{7}-\frac{8652751}{1963875}a^{6}+\frac{9321637}{1963875}a^{5}+\frac{32425021}{3927750}a^{4}-\frac{11264054}{654625}a^{3}-\frac{44242373}{3927750}a^{2}+\frac{135139043}{3927750}a+\frac{39061961}{1309250}$, $\frac{49481}{3927750}a^{11}-\frac{98533}{785550}a^{10}+\frac{1206767}{3927750}a^{9}-\frac{100703}{785550}a^{8}-\frac{1762348}{1963875}a^{7}+\frac{973157}{654625}a^{6}+\frac{7971101}{3927750}a^{5}-\frac{26038781}{3927750}a^{4}+\frac{6946129}{3927750}a^{3}+\frac{27372904}{1963875}a^{2}-\frac{15703469}{1963875}a-\frac{72331633}{3927750}$
|
| |
| Regulator: | \( 67.2184535757 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 67.2184535757 \cdot 1}{2\cdot\sqrt{48631121859501}}\cr\approx \mathstrut & 0.296538159150 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 9 conjugacy class representatives for $(C_6\times C_2):C_2$ |
| Character table for $(C_6\times C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 4.0.36501.1, 6.0.12167.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 12 sibling: | 12.2.1313040290206527.1 |
| Minimal sibling: | 12.2.1313040290206527.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(23\)
| 23.1.4.3a1.1 | $x^{4} + 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
| 23.1.4.3a1.1 | $x^{4} + 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 23.1.4.3a1.1 | $x^{4} + 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |