Normalized defining polynomial
\( x^{12} + 21 x^{10} - 35 x^{9} + 441 x^{8} + 2205 x^{7} + 10486 x^{6} + 30870 x^{5} + 143031 x^{4} + 281260 x^{3} + 540225 x^{2} + 900375 x + 1500625 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(484679258335001953125=3^{16}\cdot 5^{9}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(256,·)$, $\chi_{315}(1,·)$, $\chi_{315}(67,·)$, $\chi_{315}(4,·)$, $\chi_{315}(193,·)$, $\chi_{315}(64,·)$, $\chi_{315}(268,·)$, $\chi_{315}(142,·)$, $\chi_{315}(79,·)$, $\chi_{315}(16,·)$, $\chi_{315}(253,·)$, $\chi_{315}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{7} a^{4}$, $\frac{1}{7} a^{5}$, $\frac{1}{49} a^{6}$, $\frac{1}{49} a^{7}$, $\frac{1}{49} a^{8}$, $\frac{1}{52086265} a^{9} + \frac{4859}{1488179} a^{8} - \frac{2407}{7440895} a^{7} + \frac{10925}{1488179} a^{6} + \frac{23159}{1062985} a^{5} + \frac{2413}{212597} a^{4} - \frac{60906}{1062985} a^{3} - \frac{7230}{30371} a^{2} + \frac{60667}{151855} a + \frac{189}{30371}$, $\frac{1}{260431325} a^{10} - \frac{1}{175} a^{8} - \frac{1}{245} a^{7} + \frac{3}{1225} a^{6} + \frac{5304}{96635} a^{5} + \frac{9}{175} a^{4} + \frac{1}{35} a^{3} + \frac{2}{25} a^{2} - \frac{1}{5} a + \frac{10195}{30371}$, $\frac{1}{1302156625} a^{11} - \frac{4}{1302156625} a^{9} + \frac{284274}{37204475} a^{8} + \frac{1072613}{186022375} a^{7} - \frac{242712}{37204475} a^{6} - \frac{92636}{26574625} a^{5} - \frac{222249}{5314925} a^{4} + \frac{1610319}{26574625} a^{3} - \frac{305161}{759275} a^{2} - \frac{20164}{151855} a + \frac{13333}{30371}$
Class group and class number
$C_{2}\times C_{222}$, which has order $444$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1926}{1302156625} a^{11} + \frac{642}{260431325} a^{10} - \frac{5778}{186022375} a^{9} + \frac{3627}{37204475} a^{8} - \frac{137388}{186022375} a^{7} - \frac{11556}{5314925} a^{6} - \frac{267714}{26574625} a^{5} - \frac{105288}{5314925} a^{4} - \frac{4087819}{26574625} a^{3} - \frac{1926}{30371} a^{2} - \frac{3210}{30371} a \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8321.40669675 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.3969.2, \(\Q(\zeta_{5})\), 6.6.1969120125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.16.25 | $x^{12} + 93 x^{11} - 36 x^{10} + 357 x^{9} + 270 x^{8} + 324 x^{7} + 207 x^{6} - 216 x^{5} - 324 x^{4} - 54 x^{3} - 81 x^{2} - 324$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.12.8.2 | $x^{12} + 49 x^{6} - 1029 x^{3} + 12005$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |