Properties

Label 12.0.4803019327984761.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{2}\cdot 13^{2}\cdot 59^{2}\cdot 30119^{2}$
Root discriminant $20.27$
Ramified primes $3, 13, 59, 30119$
Class number $1$
Class group Trivial
Galois group 12T285

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64, -160, 176, -136, 112, -102, 81, -51, 28, -17, 11, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 5*x^11 + 11*x^10 - 17*x^9 + 28*x^8 - 51*x^7 + 81*x^6 - 102*x^5 + 112*x^4 - 136*x^3 + 176*x^2 - 160*x + 64)
 
gp: K = bnfinit(x^12 - 5*x^11 + 11*x^10 - 17*x^9 + 28*x^8 - 51*x^7 + 81*x^6 - 102*x^5 + 112*x^4 - 136*x^3 + 176*x^2 - 160*x + 64, 1)
 

Normalized defining polynomial

\( x^{12} - 5 x^{11} + 11 x^{10} - 17 x^{9} + 28 x^{8} - 51 x^{7} + 81 x^{6} - 102 x^{5} + 112 x^{4} - 136 x^{3} + 176 x^{2} - 160 x + 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4803019327984761=3^{2}\cdot 13^{2}\cdot 59^{2}\cdot 30119^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13, 59, 30119$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{3}{16} a^{7} + \frac{5}{16} a^{5} + \frac{5}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{3}{32} a^{8} + \frac{5}{32} a^{6} - \frac{11}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2277.84250489 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

12T285:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 23040
The 37 conjugacy class representatives for [2^5]S(6)
Character table for [2^5]S(6) is not computed

Intermediate fields

6.6.23101273.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.0.1$x^{8} - x^{3} + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
$59$$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.4.2.1$x^{4} + 177 x^{2} + 13924$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
59.4.0.1$x^{4} - x + 14$$1$$4$$0$$C_4$$[\ ]^{4}$
30119Data not computed