Normalized defining polynomial
\( x^{12} + 318 x^{10} - x^{9} + 35199 x^{8} - 5601 x^{7} + 1766048 x^{6} - 870237 x^{5} + 42372270 x^{4} - 39182024 x^{3} + 490256874 x^{2} - 445296567 x + 2516315671 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4783253053886935470703125=3^{18}\cdot 5^{9}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1935=3^{2}\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1935}(128,·)$, $\chi_{1935}(1,·)$, $\chi_{1935}(259,·)$, $\chi_{1935}(773,·)$, $\chi_{1935}(646,·)$, $\chi_{1935}(257,·)$, $\chi_{1935}(904,·)$, $\chi_{1935}(1418,·)$, $\chi_{1935}(1547,·)$, $\chi_{1935}(1549,·)$, $\chi_{1935}(902,·)$, $\chi_{1935}(1291,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{659} a^{9} + \frac{265}{659} a^{7} + \frac{255}{659} a^{6} + \frac{66}{659} a^{5} - \frac{42}{659} a^{4} - \frac{236}{659} a^{3} + \frac{313}{659} a^{2} + \frac{326}{659} a + \frac{237}{659}$, $\frac{1}{12521} a^{10} - \frac{4}{12521} a^{9} + \frac{3560}{12521} a^{8} - \frac{146}{12521} a^{7} + \frac{1023}{12521} a^{6} + \frac{353}{12521} a^{5} + \frac{4545}{12521} a^{4} + \frac{3893}{12521} a^{3} + \frac{3687}{12521} a^{2} - \frac{4362}{12521} a + \frac{370}{12521}$, $\frac{1}{26869993873716736701279424839687963059} a^{11} - \frac{372958158231288234718113935868728}{26869993873716736701279424839687963059} a^{10} - \frac{19057846066478132359930624983385101}{26869993873716736701279424839687963059} a^{9} + \frac{10220165601756510608267576900869173367}{26869993873716736701279424839687963059} a^{8} - \frac{11969140875301135806677581252541233366}{26869993873716736701279424839687963059} a^{7} - \frac{8823321752116181034168025877771077932}{26869993873716736701279424839687963059} a^{6} + \frac{3889472467661694055257177635923887819}{26869993873716736701279424839687963059} a^{5} + \frac{6315674209561989458361913863521184812}{26869993873716736701279424839687963059} a^{4} + \frac{5494905673246366606040837573039042246}{26869993873716736701279424839687963059} a^{3} + \frac{11827840898856597022000204261412749755}{26869993873716736701279424839687963059} a^{2} - \frac{2031685596235803431937817528811670460}{26869993873716736701279424839687963059} a + \frac{12447028019801171229299565327462851650}{26869993873716736701279424839687963059}$
Class group and class number
$C_{2}\times C_{52090}$, which has order $104180$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.2080125.1, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.74 | $x^{12} - 6 x^{11} - 3 x^{10} - 12 x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | $C_{12}$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $43$ | 43.12.6.2 | $x^{12} - 147008443 x^{2} + 164355439274$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |