Properties

Label 12.0.461760500000000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{8}\cdot 5^{9}\cdot 31^{4}$
Root discriminant $16.67$
Ramified primes $2, 5, 31$
Class number $3$
Class group $[3]$
Galois group $C_3\times (C_3 : C_4)$ (as 12T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 18, 29, 129, 98, 87, 34, 25, 1, 5, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 5*x^10 + x^9 + 25*x^8 + 34*x^7 + 87*x^6 + 98*x^5 + 129*x^4 + 29*x^3 + 18*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^12 - 3*x^11 + 5*x^10 + x^9 + 25*x^8 + 34*x^7 + 87*x^6 + 98*x^5 + 129*x^4 + 29*x^3 + 18*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{11} + 5 x^{10} + x^{9} + 25 x^{8} + 34 x^{7} + 87 x^{6} + 98 x^{5} + 129 x^{4} + 29 x^{3} + 18 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(461760500000000=2^{8}\cdot 5^{9}\cdot 31^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{1}{11} a^{9} - \frac{3}{11} a^{8} - \frac{1}{11} a^{7} + \frac{2}{11} a^{6} - \frac{1}{11} a^{5} + \frac{4}{11} a^{4} + \frac{5}{11} a^{3} + \frac{2}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{1090898611} a^{11} - \frac{2287401}{1090898611} a^{10} + \frac{246734247}{1090898611} a^{9} + \frac{245977378}{1090898611} a^{8} + \frac{250518607}{1090898611} a^{7} + \frac{188960416}{1090898611} a^{6} + \frac{48520242}{99172601} a^{5} + \frac{485841443}{1090898611} a^{4} - \frac{13484322}{99172601} a^{3} + \frac{473212802}{1090898611} a^{2} - \frac{415380815}{1090898611} a + \frac{191348095}{1090898611}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{441071008}{1090898611} a^{11} + \frac{1378479786}{1090898611} a^{10} - \frac{2352419084}{1090898611} a^{9} - \frac{222247292}{1090898611} a^{8} - \frac{10892154276}{1090898611} a^{7} - \frac{13527575166}{1090898611} a^{6} - \frac{3288435406}{99172601} a^{5} - \frac{37744095869}{1090898611} a^{4} - \frac{4572207328}{99172601} a^{3} - \frac{4025083992}{1090898611} a^{2} - \frac{4764917926}{1090898611} a - \frac{1049628849}{1090898611} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 387.649011354 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_3:C_4$ (as 12T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_3\times (C_3 : C_4)$
Character table for $C_3\times (C_3 : C_4)$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 6.6.1922000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }$ R ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/13.12.0.1}{12} }$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.8.1$x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$
$5$5.12.9.2$x^{12} - 10 x^{8} + 25 x^{4} - 500$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
$31$31.3.0.1$x^{3} - x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
31.3.2.3$x^{3} - 1519$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.3$x^{3} - 1519$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.0.1$x^{3} - x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$