Normalized defining polynomial
\( x^{12} - x^{11} + 118 x^{10} - 118 x^{9} + 5383 x^{8} - 5383 x^{7} + 119107 x^{6} - 119107 x^{5} + 1313209 x^{4} - 1313209 x^{3} + 6686668 x^{2} - 6686668 x + 13595401 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4598193252144577023133=13^{11}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(481=13\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{481}(1,·)$, $\chi_{481}(258,·)$, $\chi_{481}(38,·)$, $\chi_{481}(73,·)$, $\chi_{481}(75,·)$, $\chi_{481}(332,·)$, $\chi_{481}(334,·)$, $\chi_{481}(369,·)$, $\chi_{481}(110,·)$, $\chi_{481}(184,·)$, $\chi_{481}(186,·)$, $\chi_{481}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2295721} a^{7} - \frac{1139666}{2295721} a^{6} + \frac{63}{2295721} a^{5} + \frac{442503}{2295721} a^{4} + \frac{1134}{2295721} a^{3} + \frac{234488}{2295721} a^{2} + \frac{5103}{2295721} a + \frac{468976}{2295721}$, $\frac{1}{2295721} a^{8} + \frac{72}{2295721} a^{6} + \frac{1074110}{2295721} a^{5} + \frac{1620}{2295721} a^{4} + \frac{124809}{2295721} a^{3} + \frac{11664}{2295721} a^{2} + \frac{1123281}{2295721} a + \frac{13122}{2295721}$, $\frac{1}{2295721} a^{9} + \frac{484106}{2295721} a^{6} - \frac{2916}{2295721} a^{5} + \frac{404687}{2295721} a^{4} - \frac{69984}{2295721} a^{3} + \frac{310192}{2295721} a^{2} - \frac{354294}{2295721} a + \frac{669543}{2295721}$, $\frac{1}{2295721} a^{10} - \frac{3645}{2295721} a^{6} - \frac{249618}{2295721} a^{5} - \frac{109350}{2295721} a^{4} + \frac{11307}{2295721} a^{3} - \frac{885735}{2295721} a^{2} + \frac{472421}{2295721} a - \frac{1062882}{2295721}$, $\frac{1}{2295721} a^{11} + \frac{922822}{2295721} a^{6} + \frac{120285}{2295721} a^{5} - \frac{957121}{2295721} a^{4} + \frac{951974}{2295721} a^{3} - \frac{1122752}{2295721} a^{2} - \frac{828215}{2295721} a - \frac{894625}{2295721}$
Class group and class number
$C_{3650}$, which has order $3650$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.3007693.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $37$ | 37.12.6.2 | $x^{12} - 69343957 x^{2} + 51314528180$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |