Properties

Label 12.0.458838245376.1
Degree $12$
Signature $[0, 6]$
Discriminant $458838245376$
Root discriminant \(9.37\)
Ramified primes $2,3,7$
Class number $1$
Class group trivial
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1)
 
gp: K = bnfinit(y^12 - 6*y^11 + 17*y^10 - 28*y^9 + 24*y^8 - 20*y^6 + 18*y^5 - 6*y^4 - 4*y^3 + 8*y^2 - 4*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1)
 

\( x^{12} - 6x^{11} + 17x^{10} - 28x^{9} + 24x^{8} - 20x^{6} + 18x^{5} - 6x^{4} - 4x^{3} + 8x^{2} - 4x + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(458838245376\) \(\medspace = 2^{18}\cdot 3^{6}\cdot 7^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(9.37\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}7^{2/3}\approx 17.926863604818365$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2387}a^{11}-\frac{9}{341}a^{10}-\frac{106}{217}a^{9}-\frac{402}{2387}a^{8}-\frac{932}{2387}a^{7}+\frac{610}{2387}a^{6}+\frac{145}{341}a^{5}-\frac{549}{2387}a^{4}+\frac{256}{2387}a^{3}-\frac{274}{2387}a^{2}-\frac{1083}{2387}a-\frac{335}{2387}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{234}{341} a^{11} + \frac{1443}{341} a^{10} - \frac{368}{31} a^{9} + \frac{6431}{341} a^{8} - \frac{4926}{341} a^{7} - \frac{1225}{341} a^{6} + \frac{5282}{341} a^{5} - \frac{3160}{341} a^{4} + \frac{112}{341} a^{3} + \frac{1372}{341} a^{2} - \frac{1646}{341} a + \frac{642}{341} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $\frac{2683}{2387}a^{11}-\frac{2323}{341}a^{10}+\frac{4212}{217}a^{9}-\frac{76026}{2387}a^{8}+\frac{63082}{2387}a^{7}+\frac{6309}{2387}a^{6}-\frac{8912}{341}a^{5}+\frac{49939}{2387}a^{4}-\frac{7769}{2387}a^{3}-\frac{16655}{2387}a^{2}+\frac{20773}{2387}a-\frac{8454}{2387}$, $\frac{39}{341}a^{11}-\frac{70}{341}a^{10}-\frac{11}{31}a^{9}+\frac{690}{341}a^{8}-\frac{1225}{341}a^{7}+\frac{602}{341}a^{6}+\frac{1052}{341}a^{5}-\frac{1292}{341}a^{4}+\frac{436}{341}a^{3}+\frac{226}{341}a^{2}-\frac{294}{341}a+\frac{234}{341}$, $\frac{524}{2387}a^{11}-\frac{283}{341}a^{10}+\frac{225}{217}a^{9}+\frac{1795}{2387}a^{8}-\frac{10968}{2387}a^{7}+\frac{14104}{2387}a^{6}-\frac{63}{341}a^{5}-\frac{10784}{2387}a^{4}+\frac{7633}{2387}a^{3}-\frac{2743}{2387}a^{2}-\frac{1773}{2387}a+\frac{3485}{2387}$, $\frac{236}{2387}a^{11}-\frac{78}{341}a^{10}-\frac{61}{217}a^{9}+\frac{5382}{2387}a^{8}-\frac{12283}{2387}a^{7}+\frac{12675}{2387}a^{6}-\frac{221}{341}a^{5}-\frac{7827}{2387}a^{4}+\frac{7902}{2387}a^{3}-\frac{2602}{2387}a^{2}-\frac{2566}{2387}a+\frac{2098}{2387}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 16.1633727166 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 16.1633727166 \cdot 1}{6\cdot\sqrt{458838245376}}\cr\approx \mathstrut & 0.244697843624 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 6*x^11 + 17*x^10 - 28*x^9 + 24*x^8 - 20*x^6 + 18*x^5 - 6*x^4 - 4*x^3 + 8*x^2 - 4*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 6.0.677376.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: 18.0.71418001746108874752.2, 18.6.1354296922000286810112.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}$ R ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.2.0.1}{2} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.18.23$x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.3.2.3$x^{3} + 21$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.3.2.3$x^{3} + 21$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$