Normalized defining polynomial
\( x^{12} - x^{11} + 143 x^{10} - 103 x^{9} + 7396 x^{8} - 3276 x^{7} + 168806 x^{6} - 19929 x^{5} + 1664623 x^{4} + 755704 x^{3} + 5432804 x^{2} + 6541378 x + 12660103 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4564184019624502972209=3^{6}\cdot 7^{10}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1113=3\cdot 7\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1113}(1,·)$, $\chi_{1113}(902,·)$, $\chi_{1113}(584,·)$, $\chi_{1113}(425,·)$, $\chi_{1113}(1006,·)$, $\chi_{1113}(370,·)$, $\chi_{1113}(52,·)$, $\chi_{1113}(158,·)$, $\chi_{1113}(953,·)$, $\chi_{1113}(317,·)$, $\chi_{1113}(478,·)$, $\chi_{1113}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3277} a^{7} + \frac{91}{3277} a^{5} - \frac{911}{3277} a^{3} - \frac{1006}{3277} a + \frac{726}{3277}$, $\frac{1}{3277} a^{8} + \frac{91}{3277} a^{6} - \frac{911}{3277} a^{4} - \frac{1006}{3277} a^{2} + \frac{726}{3277} a$, $\frac{1}{45878} a^{9} + \frac{5}{45878} a^{7} - \frac{1}{14} a^{6} - \frac{8737}{45878} a^{5} + \frac{3}{7} a^{4} + \frac{15077}{45878} a^{3} - \frac{22213}{45878} a^{2} - \frac{9174}{22939} a + \frac{19489}{45878}$, $\frac{1}{1248232520822} a^{10} + \frac{6005295}{1248232520822} a^{9} - \frac{73138823}{1248232520822} a^{8} + \frac{66360106}{624116260411} a^{7} - \frac{242176915951}{624116260411} a^{6} + \frac{114342501557}{1248232520822} a^{5} + \frac{291209631311}{1248232520822} a^{4} - \frac{267363368841}{624116260411} a^{3} + \frac{418036904357}{1248232520822} a^{2} - \frac{331284868993}{1248232520822} a + \frac{299418114921}{1248232520822}$, $\frac{1}{1248232520822} a^{11} - \frac{5628472}{624116260411} a^{9} + \frac{188992257}{1248232520822} a^{8} - \frac{206690}{89159465773} a^{7} + \frac{431909527087}{1248232520822} a^{6} - \frac{109138145587}{624116260411} a^{5} + \frac{474667468851}{1248232520822} a^{4} + \frac{288382173439}{1248232520822} a^{3} + \frac{199600911070}{624116260411} a^{2} + \frac{194900952486}{624116260411} a - \frac{53412018909}{1248232520822}$
Class group and class number
$C_{7}\times C_{840}$, which has order $5880$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-371}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-159}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-159})\), 6.0.2502175739.2, \(\Q(\zeta_{21})^+\), 6.0.9651249279.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $53$ | 53.12.6.1 | $x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |