Normalized defining polynomial
\( x^{12} - 4 x^{11} - 22 x^{10} + 220 x^{9} + 66 x^{8} - 528 x^{7} + 7920 x^{6} - 61248 x^{5} + 443652 x^{4} - 615472 x^{3} + 5326024 x^{2} - 1735376 x + 25818824 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45521378559315317157500289024=2^{24}\cdot 3^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $244.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{48} a^{4} + \frac{1}{12} a^{3} - \frac{3}{8} a^{2} + \frac{5}{12} a + \frac{1}{24}$, $\frac{1}{144} a^{5} + \frac{7}{72} a^{3} + \frac{11}{36} a^{2} + \frac{1}{8} a + \frac{5}{18}$, $\frac{1}{144} a^{6} - \frac{1}{144} a^{4} - \frac{1}{9} a^{3} + \frac{7}{36} a - \frac{5}{24}$, $\frac{1}{432} a^{7} + \frac{1}{432} a^{6} + \frac{1}{108} a^{4} - \frac{31}{216} a^{3} - \frac{1}{24} a^{2} + \frac{1}{108} a - \frac{23}{108}$, $\frac{1}{13824} a^{8} + \frac{1}{1728} a^{7} - \frac{5}{3456} a^{6} + \frac{5}{1728} a^{5} + \frac{7}{1728} a^{4} + \frac{59}{432} a^{3} + \frac{653}{1728} a^{2} - \frac{85}{864} a - \frac{1655}{3456}$, $\frac{1}{41472} a^{9} - \frac{1}{41472} a^{8} - \frac{7}{10368} a^{7} - \frac{1}{10368} a^{6} - \frac{1}{2592} a^{5} + \frac{25}{5184} a^{4} - \frac{599}{5184} a^{3} - \frac{1871}{5184} a^{2} - \frac{3283}{10368} a - \frac{4289}{10368}$, $\frac{1}{41472} a^{10} + \frac{1}{41472} a^{8} + \frac{1}{2592} a^{7} + \frac{13}{10368} a^{6} - \frac{7}{5184} a^{5} - \frac{7}{1296} a^{4} + \frac{277}{2592} a^{3} + \frac{4651}{10368} a^{2} - \frac{7}{288} a - \frac{2579}{10368}$, $\frac{1}{270107136} a^{11} + \frac{5}{1875744} a^{10} + \frac{109}{135053568} a^{9} + \frac{917}{30011904} a^{8} + \frac{6359}{11254464} a^{7} - \frac{34159}{22508928} a^{6} + \frac{148}{175851} a^{5} + \frac{101195}{11254464} a^{4} - \frac{547499}{7502976} a^{3} - \frac{14552687}{33763392} a^{2} + \frac{4672415}{11254464} a + \frac{8756845}{67526784}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11589679277.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.16.5 | $x^{11} + 88 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |