Normalized defining polynomial
\( x^{12} + 247 x^{10} + 23959 x^{8} + 1147562 x^{6} + 27702779 x^{4} + 296048519 x^{2} + 816061077 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45006250477353349878303281152=2^{12}\cdot 13^{11}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $244.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(988=2^{2}\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{988}(1,·)$, $\chi_{988}(483,·)$, $\chi_{988}(487,·)$, $\chi_{988}(809,·)$, $\chi_{988}(759,·)$, $\chi_{988}(77,·)$, $\chi_{988}(943,·)$, $\chi_{988}(49,·)$, $\chi_{988}(425,·)$, $\chi_{988}(121,·)$, $\chi_{988}(635,·)$, $\chi_{988}(151,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{2052} a^{6} - \frac{2}{27} a^{4} - \frac{5}{27} a^{2} - \frac{1}{12}$, $\frac{1}{2052} a^{7} - \frac{2}{27} a^{5} + \frac{4}{27} a^{3} - \frac{5}{12} a$, $\frac{1}{147744} a^{8} - \frac{5}{49248} a^{6} - \frac{19}{216} a^{4} + \frac{3407}{7776} a^{2} + \frac{67}{864}$, $\frac{1}{147744} a^{9} - \frac{5}{49248} a^{7} - \frac{19}{216} a^{5} + \frac{815}{7776} a^{3} + \frac{355}{864} a$, $\frac{1}{5318784} a^{10} + \frac{1}{2659392} a^{8} - \frac{97}{1772928} a^{6} + \frac{43619}{279936} a^{4} + \frac{59069}{139968} a^{2} + \frac{13235}{31104}$, $\frac{1}{739310976} a^{11} + \frac{1027}{369655488} a^{9} + \frac{24203}{246436992} a^{7} + \frac{983219}{38911104} a^{5} + \frac{1678043}{19455552} a^{3} - \frac{2016193}{4323456} a$
Class group and class number
$C_{2}\times C_{2}\times C_{10}\times C_{30270}$, which has order $1210800$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 288307.7204812408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.61009.1, 4.0.12689872.1, 6.6.48387275053.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $13$ | 13.12.11.3 | $x^{12} - 208$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $19$ | 19.12.10.6 | $x^{12} - 209 x^{6} + 11552$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |