Properties

Label 12.0.449...576.5
Degree $12$
Signature $[0, 6]$
Discriminant $4.492\times 10^{18}$
Root discriminant \(35.84\)
Ramified primes $2,17$
Class number $4$
Class group [2, 2]
Galois group $S_4^2:C_4$ (as 12T238)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234)
 
gp: K = bnfinit(y^12 - 4*y^11 + 13*y^10 - 22*y^9 - 9*y^8 + 66*y^7 - 20*y^6 - 106*y^5 + 253*y^4 - 176*y^3 + 106*y^2 - 264*y + 234, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234)
 

\( x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} + 66 x^{7} - 20 x^{6} - 106 x^{5} + 253 x^{4} + \cdots + 234 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(35.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{19/8}17^{11/12}\approx 69.63983780733449$
Ramified primes:   \(2\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{34}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{14581182354078}a^{11}+\frac{534130974721}{14581182354078}a^{10}-\frac{1486242765769}{7290591177039}a^{9}-\frac{1083567905266}{7290591177039}a^{8}+\frac{992734930865}{4860394118026}a^{7}-\frac{812112659949}{4860394118026}a^{6}-\frac{188099981711}{14581182354078}a^{5}+\frac{457077246631}{14581182354078}a^{4}-\frac{1650196532233}{7290591177039}a^{3}+\frac{544668596713}{2430197059013}a^{2}-\frac{2924725813082}{7290591177039}a+\frac{510692510538}{2430197059013}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{40888088658}{2430197059013}a^{11}-\frac{300944360437}{7290591177039}a^{10}+\frac{358187117832}{2430197059013}a^{9}-\frac{944448714922}{7290591177039}a^{8}-\frac{984479970412}{2430197059013}a^{7}+\frac{1202177940904}{2430197059013}a^{6}+\frac{1560698713954}{2430197059013}a^{5}-\frac{6224932295485}{7290591177039}a^{4}+\frac{5660686996966}{2430197059013}a^{3}+\frac{8803354172540}{7290591177039}a^{2}+\frac{18466194737380}{7290591177039}a-\frac{3875045930497}{2430197059013}$, $\frac{8091464053}{2430197059013}a^{11}-\frac{129017728352}{7290591177039}a^{10}+\frac{130282191927}{2430197059013}a^{9}-\frac{739809247199}{7290591177039}a^{8}-\frac{57696032303}{2430197059013}a^{7}+\frac{997858937389}{2430197059013}a^{6}-\frac{459571290418}{2430197059013}a^{5}-\frac{6446082712547}{7290591177039}a^{4}+\frac{5215182154129}{2430197059013}a^{3}-\frac{9335632380443}{7290591177039}a^{2}-\frac{7142487674578}{7290591177039}a+\frac{3209473131197}{2430197059013}$, $\frac{4097378482}{2430197059013}a^{11}-\frac{64557428345}{7290591177039}a^{10}+\frac{65540477848}{2430197059013}a^{9}-\frac{484798905452}{7290591177039}a^{8}+\frac{15789570836}{2430197059013}a^{7}+\frac{216829344892}{2430197059013}a^{6}-\frac{617650036654}{2430197059013}a^{5}+\frac{1153299788269}{7290591177039}a^{4}-\frac{848878741954}{2430197059013}a^{3}+\frac{325083590536}{7290591177039}a^{2}-\frac{2780072352772}{7290591177039}a+\frac{151377960455}{2430197059013}$, $\frac{33639420533}{7290591177039}a^{11}-\frac{55031930093}{2430197059013}a^{10}+\frac{460131048464}{7290591177039}a^{9}-\frac{274477414864}{2430197059013}a^{8}-\frac{241768900532}{2430197059013}a^{7}+\frac{1354762121143}{2430197059013}a^{6}-\frac{1303069584886}{7290591177039}a^{5}-\frac{2168935879426}{2430197059013}a^{4}+\frac{13944309490898}{7290591177039}a^{3}-\frac{7916578093895}{7290591177039}a^{2}-\frac{3146304722996}{2430197059013}a+\frac{3175376763827}{2430197059013}$, $\frac{11080122043}{7290591177039}a^{11}-\frac{43773387578}{7290591177039}a^{10}+\frac{145719383680}{7290591177039}a^{9}-\frac{297582268598}{7290591177039}a^{8}+\frac{75715908737}{2430197059013}a^{7}-\frac{155894692289}{2430197059013}a^{6}+\frac{2032947594010}{7290591177039}a^{5}-\frac{2199593872292}{7290591177039}a^{4}-\frac{120112221086}{7290591177039}a^{3}+\frac{850968641436}{2430197059013}a^{2}-\frac{2568916121095}{7290591177039}a+\frac{410408719085}{2430197059013}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 22408.4289326 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 22408.4289326 \cdot 4}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.30105778014 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 13*x^10 - 22*x^9 - 9*x^8 + 66*x^7 - 20*x^6 - 106*x^5 + 253*x^4 - 176*x^3 + 106*x^2 - 264*x + 234);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4^2:C_4$ (as 12T238):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 2304
The 40 conjugacy class representatives for $S_4^2:C_4$
Character table for $S_4^2:C_4$

Intermediate fields

\(\Q(\sqrt{17}) \), 6.2.11358856.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.4.561510749104259072.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ ${\href{/padicField/7.12.0.1}{12} }$ ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ R ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.3.0.1}{3} }^{4}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.2$x^{2} + 4 x + 10$$2$$1$$3$$C_2$$[3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
2.6.6.2$x^{6} + 6 x^{5} + 14 x^{4} + 24 x^{3} + 44 x^{2} + 8 x + 72$$2$$3$$6$$A_4\times C_2$$[2, 2]^{6}$
\(17\) Copy content Toggle raw display 17.12.11.2$x^{12} + 34$$12$$1$$11$$S_3 \times C_4$$[\ ]_{12}^{2}$