Normalized defining polynomial
\( x^{12} - 4 x^{11} + 13 x^{10} - 22 x^{9} - 9 x^{8} + 66 x^{7} - 20 x^{6} - 106 x^{5} + 253 x^{4} + \cdots + 234 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{19/8}17^{11/12}\approx 69.63983780733449$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{14581182354078}a^{11}+\frac{534130974721}{14581182354078}a^{10}-\frac{1486242765769}{7290591177039}a^{9}-\frac{1083567905266}{7290591177039}a^{8}+\frac{992734930865}{4860394118026}a^{7}-\frac{812112659949}{4860394118026}a^{6}-\frac{188099981711}{14581182354078}a^{5}+\frac{457077246631}{14581182354078}a^{4}-\frac{1650196532233}{7290591177039}a^{3}+\frac{544668596713}{2430197059013}a^{2}-\frac{2924725813082}{7290591177039}a+\frac{510692510538}{2430197059013}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{40888088658}{2430197059013}a^{11}-\frac{300944360437}{7290591177039}a^{10}+\frac{358187117832}{2430197059013}a^{9}-\frac{944448714922}{7290591177039}a^{8}-\frac{984479970412}{2430197059013}a^{7}+\frac{1202177940904}{2430197059013}a^{6}+\frac{1560698713954}{2430197059013}a^{5}-\frac{6224932295485}{7290591177039}a^{4}+\frac{5660686996966}{2430197059013}a^{3}+\frac{8803354172540}{7290591177039}a^{2}+\frac{18466194737380}{7290591177039}a-\frac{3875045930497}{2430197059013}$, $\frac{8091464053}{2430197059013}a^{11}-\frac{129017728352}{7290591177039}a^{10}+\frac{130282191927}{2430197059013}a^{9}-\frac{739809247199}{7290591177039}a^{8}-\frac{57696032303}{2430197059013}a^{7}+\frac{997858937389}{2430197059013}a^{6}-\frac{459571290418}{2430197059013}a^{5}-\frac{6446082712547}{7290591177039}a^{4}+\frac{5215182154129}{2430197059013}a^{3}-\frac{9335632380443}{7290591177039}a^{2}-\frac{7142487674578}{7290591177039}a+\frac{3209473131197}{2430197059013}$, $\frac{4097378482}{2430197059013}a^{11}-\frac{64557428345}{7290591177039}a^{10}+\frac{65540477848}{2430197059013}a^{9}-\frac{484798905452}{7290591177039}a^{8}+\frac{15789570836}{2430197059013}a^{7}+\frac{216829344892}{2430197059013}a^{6}-\frac{617650036654}{2430197059013}a^{5}+\frac{1153299788269}{7290591177039}a^{4}-\frac{848878741954}{2430197059013}a^{3}+\frac{325083590536}{7290591177039}a^{2}-\frac{2780072352772}{7290591177039}a+\frac{151377960455}{2430197059013}$, $\frac{33639420533}{7290591177039}a^{11}-\frac{55031930093}{2430197059013}a^{10}+\frac{460131048464}{7290591177039}a^{9}-\frac{274477414864}{2430197059013}a^{8}-\frac{241768900532}{2430197059013}a^{7}+\frac{1354762121143}{2430197059013}a^{6}-\frac{1303069584886}{7290591177039}a^{5}-\frac{2168935879426}{2430197059013}a^{4}+\frac{13944309490898}{7290591177039}a^{3}-\frac{7916578093895}{7290591177039}a^{2}-\frac{3146304722996}{2430197059013}a+\frac{3175376763827}{2430197059013}$, $\frac{11080122043}{7290591177039}a^{11}-\frac{43773387578}{7290591177039}a^{10}+\frac{145719383680}{7290591177039}a^{9}-\frac{297582268598}{7290591177039}a^{8}+\frac{75715908737}{2430197059013}a^{7}-\frac{155894692289}{2430197059013}a^{6}+\frac{2032947594010}{7290591177039}a^{5}-\frac{2199593872292}{7290591177039}a^{4}-\frac{120112221086}{7290591177039}a^{3}+\frac{850968641436}{2430197059013}a^{2}-\frac{2568916121095}{7290591177039}a+\frac{410408719085}{2430197059013}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 22408.4289326 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 22408.4289326 \cdot 4}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 1.30105778014 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.561510749104259072.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.6.6.2 | $x^{6} + 6 x^{5} + 14 x^{4} + 24 x^{3} + 44 x^{2} + 8 x + 72$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |