Normalized defining polynomial
\( x^{12} - 2 x^{11} - x^{10} + 10 x^{9} + 43 x^{8} - 152 x^{7} + 294 x^{6} - 348 x^{5} + 712 x^{4} + \cdots + 752 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{13/6}17^{11/12}\approx 60.275825724785875$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{6}a^{9}-\frac{1}{6}a^{7}+\frac{1}{6}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{12}a^{10}-\frac{1}{12}a^{8}-\frac{5}{12}a^{6}+\frac{1}{6}a^{5}-\frac{1}{6}a^{4}+\frac{1}{3}a$, $\frac{1}{2728523407440}a^{11}+\frac{4872600053}{227376950620}a^{10}-\frac{55311684713}{2728523407440}a^{9}+\frac{30058404233}{227376950620}a^{8}+\frac{625688622251}{2728523407440}a^{7}+\frac{68741112433}{1364261703720}a^{6}+\frac{73955180967}{454753901240}a^{5}-\frac{27078619682}{170532712965}a^{4}-\frac{78089574574}{170532712965}a^{3}+\frac{9008521295}{34106542593}a^{2}+\frac{107882913099}{227376950620}a-\frac{2447410519}{7256711190}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{200477156}{170532712965}a^{11}+\frac{2143349707}{341065425930}a^{10}+\frac{426515454}{56844237655}a^{9}-\frac{1166413484}{170532712965}a^{8}+\frac{3556454702}{56844237655}a^{7}+\frac{17589480322}{56844237655}a^{6}+\frac{61459586387}{170532712965}a^{5}+\frac{22553326437}{113688475310}a^{4}+\frac{122032246196}{170532712965}a^{3}+\frac{45370730605}{34106542593}a^{2}+\frac{234751474088}{170532712965}a+\frac{1375655353}{3628355595}$, $\frac{454159456}{170532712965}a^{11}-\frac{393524538}{56844237655}a^{10}-\frac{860083161}{56844237655}a^{9}+\frac{5243659639}{113688475310}a^{8}+\frac{7441464892}{56844237655}a^{7}-\frac{201815799143}{341065425930}a^{6}+\frac{53088767642}{170532712965}a^{5}+\frac{127712637721}{341065425930}a^{4}-\frac{116114774054}{170532712965}a^{3}+\frac{7696571918}{34106542593}a^{2}-\frac{83197021544}{56844237655}a+\frac{14895659153}{3628355595}$, $\frac{999343072}{170532712965}a^{11}-\frac{2217076123}{170532712965}a^{10}-\frac{1351762511}{170532712965}a^{9}+\frac{15258814792}{170532712965}a^{8}+\frac{34555052252}{170532712965}a^{7}-\frac{176671711853}{170532712965}a^{6}+\frac{335756692594}{170532712965}a^{5}-\frac{50006444753}{56844237655}a^{4}-\frac{3513394168}{170532712965}a^{3}+\frac{35365801610}{34106542593}a^{2}+\frac{31009751696}{170532712965}a+\frac{13158230941}{3628355595}$, $\frac{173838572}{56844237655}a^{11}+\frac{11123486}{170532712965}a^{10}-\frac{499819328}{170532712965}a^{9}+\frac{8672898527}{341065425930}a^{8}+\frac{28185903386}{170532712965}a^{7}-\frac{58497001523}{341065425930}a^{6}+\frac{92701441412}{170532712965}a^{5}+\frac{20492776271}{341065425930}a^{4}+\frac{240852108646}{170532712965}a^{3}-\frac{1348927560}{11368847531}a^{2}+\frac{76065695048}{170532712965}a-\frac{2268054577}{3628355595}$, $\frac{2497403801}{2728523407440}a^{11}+\frac{198786797}{341065425930}a^{10}+\frac{6078241389}{909507802480}a^{9}+\frac{3372073646}{170532712965}a^{8}+\frac{11245901057}{909507802480}a^{7}+\frac{26382618763}{1364261703720}a^{6}+\frac{274263905827}{454753901240}a^{5}+\frac{77371122541}{341065425930}a^{4}+\frac{194682520927}{341065425930}a^{3}+\frac{22249844152}{34106542593}a^{2}+\frac{1270997597017}{682130851860}a+\frac{15447252881}{7256711190}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 30270.5942168 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 30270.5942168 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 0.878771828087 \end{aligned}\]
Galois group
$D_6\wr C_2$ (as 12T125):
A solvable group of order 288 |
The 27 conjugacy class representatives for $D_6\wr C_2$ |
Character table for $D_6\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.0.39304.1, 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.4.6.2 | $x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.11.5 | $x^{6} + 4 x^{3} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |