Normalized defining polynomial
\( x^{12} + 17x^{10} + 119x^{8} + 459x^{6} + 952x^{4} + 1020x^{2} + 136 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{19/8}17^{11/12}\approx 69.63983780733449$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{5}$, $\frac{1}{16944}a^{10}+\frac{397}{4236}a^{8}+\frac{4099}{16944}a^{6}+\frac{317}{4236}a^{4}-\frac{1603}{4236}a^{2}-\frac{937}{2118}$, $\frac{1}{33888}a^{11}-\frac{1}{33888}a^{10}+\frac{397}{8472}a^{9}-\frac{397}{8472}a^{8}+\frac{4099}{33888}a^{7}-\frac{4099}{33888}a^{6}+\frac{317}{8472}a^{5}-\frac{317}{8472}a^{4}+\frac{2633}{8472}a^{3}-\frac{2633}{8472}a^{2}+\frac{1181}{4236}a-\frac{1181}{4236}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{47}{8472}a^{10}+\frac{253}{4236}a^{8}+\frac{2033}{8472}a^{6}+\frac{3323}{4236}a^{4}+\frac{983}{1059}a^{2}+\frac{439}{1059}$, $\frac{199}{16944}a^{10}+\frac{637}{4236}a^{8}+\frac{10861}{16944}a^{6}+\frac{5897}{4236}a^{4}+\frac{5057}{4236}a^{2}-\frac{79}{2118}$, $\frac{271}{8472}a^{10}+\frac{2315}{4236}a^{8}+\frac{30649}{8472}a^{6}+\frac{50029}{4236}a^{4}+\frac{17362}{1059}a^{2}+\frac{2351}{1059}$, $\frac{5}{16944}a^{11}-\frac{25}{5648}a^{10}-\frac{133}{4236}a^{9}-\frac{41}{1412}a^{8}-\frac{9157}{16944}a^{7}+\frac{601}{5648}a^{6}-\frac{3575}{1059}a^{5}+\frac{803}{706}a^{4}-\frac{44021}{4236}a^{3}+\frac{4069}{1412}a^{2}-\frac{25865}{2118}a-\frac{1991}{706}$, $\frac{901}{33888}a^{11}+\frac{703}{11296}a^{10}+\frac{1873}{8472}a^{9}+\frac{2339}{2824}a^{8}+\frac{7879}{33888}a^{7}+\frac{37829}{11296}a^{6}-\frac{8785}{8472}a^{5}+\frac{11757}{2824}a^{4}-\frac{59131}{8472}a^{3}-\frac{1545}{2824}a^{2}-\frac{3391}{4236}a-\frac{13}{1412}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 28881.2210464 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 28881.2210464 \cdot 2}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 0.838437568637 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 12T238):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.561510749104259072.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.6.9.4 | $x^{6} + 4 x^{5} + 14 x^{4} + 224 x^{3} + 1244 x^{2} + 3184 x + 2376$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |