Normalized defining polynomial
\( x^{12} - x^{11} + 4 x^{10} - 3 x^{9} + 59 x^{8} + 8 x^{7} + 207 x^{6} + 103 x^{5} + 406 x^{4} + \cdots + 98 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4492085992834072576\) \(\medspace = 2^{17}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.84\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{17/6}17^{11/12}\approx 95.68190916377696$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{43559100296012}a^{11}+\frac{3437934846489}{21779550148006}a^{10}-\frac{4659069315606}{10889775074003}a^{9}-\frac{4513477328657}{43559100296012}a^{8}-\frac{2873341398657}{21779550148006}a^{7}-\frac{3048734560777}{21779550148006}a^{6}+\frac{20706987925229}{43559100296012}a^{5}+\frac{3389465756011}{21779550148006}a^{4}+\frac{591861284519}{3111364306858}a^{3}-\frac{14328988193937}{43559100296012}a^{2}-\frac{4615147736565}{10889775074003}a+\frac{537641291955}{3111364306858}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{222587916765}{21779550148006}a^{11}-\frac{664116471197}{21779550148006}a^{10}+\frac{1633349347205}{21779550148006}a^{9}-\frac{1536181835012}{10889775074003}a^{8}+\frac{7922587387658}{10889775074003}a^{7}-\frac{12624922583271}{10889775074003}a^{6}+\frac{58232536193253}{21779550148006}a^{5}-\frac{79041141624887}{21779550148006}a^{4}+\frac{12373257356287}{3111364306858}a^{3}-\frac{59909599139405}{10889775074003}a^{2}+\frac{18011660840759}{10889775074003}a-\frac{7626566977863}{1555682153429}$, $\frac{354210820639}{43559100296012}a^{11}-\frac{80931219833}{21779550148006}a^{10}+\frac{317181868224}{10889775074003}a^{9}-\frac{1298844999219}{43559100296012}a^{8}+\frac{10581920338177}{21779550148006}a^{7}+\frac{7220042192491}{21779550148006}a^{6}+\frac{72305019531859}{43559100296012}a^{5}+\frac{16450487423121}{21779550148006}a^{4}+\frac{9924894986989}{3111364306858}a^{3}+\frac{147093834189405}{43559100296012}a^{2}-\frac{10972677805377}{10889775074003}a+\frac{2832466893201}{3111364306858}$, $\frac{172931056143}{43559100296012}a^{11}-\frac{18196160601}{21779550148006}a^{10}-\frac{3268444642}{10889775074003}a^{9}+\frac{1253669317533}{43559100296012}a^{8}+\frac{3033151374619}{21779550148006}a^{7}+\frac{6996050906701}{21779550148006}a^{6}+\frac{453613825115}{43559100296012}a^{5}+\frac{38039316403593}{21779550148006}a^{4}-\frac{4140979466781}{3111364306858}a^{3}+\frac{120615768949449}{43559100296012}a^{2}-\frac{15532430051087}{10889775074003}a+\frac{1777165189201}{3111364306858}$, $\frac{292495090913}{21779550148006}a^{11}-\frac{446054981229}{21779550148006}a^{10}+\frac{794266452681}{21779550148006}a^{9}-\frac{371620795517}{10889775074003}a^{8}+\frac{8264210927979}{10889775074003}a^{7}-\frac{2916000586784}{10889775074003}a^{6}+\frac{29673974145545}{21779550148006}a^{5}+\frac{4501885778599}{21779550148006}a^{4}+\frac{7617035827601}{3111364306858}a^{3}-\frac{23259997834956}{10889775074003}a^{2}+\frac{10006760899805}{10889775074003}a-\frac{2637310962877}{1555682153429}$, $\frac{356799526477}{21779550148006}a^{11}-\frac{1002586845563}{21779550148006}a^{10}+\frac{2226192292073}{21779550148006}a^{9}-\frac{1966615411792}{10889775074003}a^{8}+\frac{11779911911666}{10889775074003}a^{7}-\frac{17683664257755}{10889775074003}a^{6}+\frac{75971366604813}{21779550148006}a^{5}-\frac{99407069828693}{21779550148006}a^{4}+\frac{13687825257695}{3111364306858}a^{3}-\frac{91300918972519}{10889775074003}a^{2}+\frac{25723440526615}{10889775074003}a-\frac{16390816530933}{1555682153429}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 16124.0322786 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 16124.0322786 \cdot 4}{2\cdot\sqrt{4492085992834072576}}\cr\approx \mathstrut & 0.936178868516 \end{aligned}\] (assuming GRH)
Galois group
$S_4^2:D_4$ (as 12T260):
A solvable group of order 4608 |
The 65 conjugacy class representatives for $S_4^2:D_4$ |
Character table for $S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{6}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.10.6 | $x^{4} + 4 x^{3} + 12 x^{2} + 10$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |