Normalized defining polynomial
\( x^{12} - x^{11} - x^{10} - 18 x^{9} + 13 x^{8} + 9 x^{7} + 75 x^{6} + 5 x^{5} + 27 x^{4} - 107 x^{3} + 32 x^{2} - 35 x + 49 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4469547301936929=3^{6}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(57=3\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{57}(1,·)$, $\chi_{57}(37,·)$, $\chi_{57}(7,·)$, $\chi_{57}(8,·)$, $\chi_{57}(11,·)$, $\chi_{57}(46,·)$, $\chi_{57}(49,·)$, $\chi_{57}(50,·)$, $\chi_{57}(20,·)$, $\chi_{57}(56,·)$, $\chi_{57}(26,·)$, $\chi_{57}(31,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{77} a^{10} + \frac{2}{77} a^{9} - \frac{4}{77} a^{8} - \frac{4}{77} a^{7} + \frac{4}{77} a^{6} - \frac{9}{77} a^{5} - \frac{3}{11} a^{4} + \frac{1}{77} a^{3} - \frac{1}{77} a^{2} + \frac{24}{77} a + \frac{2}{11}$, $\frac{1}{87857} a^{11} - \frac{9}{1793} a^{10} - \frac{3354}{87857} a^{9} + \frac{1570}{87857} a^{8} - \frac{1623}{87857} a^{7} - \frac{2419}{87857} a^{6} + \frac{11292}{87857} a^{5} - \frac{29086}{87857} a^{4} - \frac{13281}{87857} a^{3} - \frac{39463}{87857} a^{2} + \frac{328}{12551} a - \frac{499}{1793}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{179}{7987} a^{11} - \frac{30}{1141} a^{10} - \frac{200}{7987} a^{9} - \frac{3079}{7987} a^{8} + \frac{2720}{7987} a^{7} + \frac{1720}{7987} a^{6} + \frac{10826}{7987} a^{5} + \frac{1130}{7987} a^{4} + \frac{6250}{7987} a^{3} - \frac{9074}{7987} a^{2} + \frac{1010}{1141} a + \frac{3}{163} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1924.35460113 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \), 3.3.361.1, \(\Q(\sqrt{-3}, \sqrt{-19})\), 6.6.66854673.1, 6.0.3518667.1, 6.0.2476099.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |