Properties

Label 12.0.446676160500000000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{8}\cdot 3^{12}\cdot 5^{9}\cdot 41^{2}$
Root discriminant $29.57$
Ramified primes $2, 3, 5, 41$
Class number $1$
Class group Trivial
Galois group 12T170

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3280, 0, 7380, -520, 5661, -630, 1968, -210, 324, -20, 27, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280)
 
gp: K = bnfinit(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280, 1)
 

Normalized defining polynomial

\( x^{12} + 27 x^{10} - 20 x^{9} + 324 x^{8} - 210 x^{7} + 1968 x^{6} - 630 x^{5} + 5661 x^{4} - 520 x^{3} + 7380 x^{2} + 3280 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(446676160500000000=2^{8}\cdot 3^{12}\cdot 5^{9}\cdot 41^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{43899652739570864} a^{11} - \frac{999690133719313}{21949826369785432} a^{10} - \frac{2585030706369389}{43899652739570864} a^{9} + \frac{6913551788429743}{21949826369785432} a^{8} + \frac{5223756891550717}{10974913184892716} a^{7} - \frac{1032874728445673}{21949826369785432} a^{6} - \frac{5458510751125139}{10974913184892716} a^{5} - \frac{3894956792769587}{21949826369785432} a^{4} - \frac{6436445058509031}{43899652739570864} a^{3} - \frac{3363860063046473}{21949826369785432} a^{2} + \frac{972370001877287}{10974913184892716} a + \frac{951882889208629}{2743728296223179}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{15500786844339}{21949826369785432} a^{11} + \frac{27751140888123}{21949826369785432} a^{10} + \frac{375609142391647}{21949826369785432} a^{9} + \frac{406838397290229}{21949826369785432} a^{8} + \frac{1713425502939873}{10974913184892716} a^{7} + \frac{2848304050558959}{10974913184892716} a^{6} + \frac{7185128607484389}{10974913184892716} a^{5} + \frac{20488579510413213}{10974913184892716} a^{4} + \frac{25054598797503653}{21949826369785432} a^{3} + \frac{98360570878469451}{21949826369785432} a^{2} + \frac{15072739802154837}{10974913184892716} a + \frac{19199617478949547}{5487456592446358} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27699.7184504 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

12T170:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 648
The 30 conjugacy class representatives for [3^4:2]4
Character table for [3^4:2]4 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.12.0.1}{12} }$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ R ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.12.12.7$x^{12} + 12 x^{11} + 108 x^{10} + 105 x^{9} - 45 x^{8} + 45 x^{7} - 81 x^{6} - 108 x^{5} + 27 x^{4} - 81 x^{3} - 81 x^{2} + 81 x - 81$$3$$4$$12$12T119$[3/2, 3/2, 3/2]_{2}^{4}$
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$41$$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.3.2.1$x^{3} - 41$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$