Properties

Label 12.0.446676160500000000.1
Degree $12$
Signature $[0, 6]$
Discriminant $4.467\times 10^{17}$
Root discriminant \(29.57\)
Ramified primes $2,3,5,41$
Class number $1$
Class group trivial
Galois group $C_3^3:(C_4\times S_3)$ (as 12T170)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280)
 
gp: K = bnfinit(y^12 + 27*y^10 - 20*y^9 + 324*y^8 - 210*y^7 + 1968*y^6 - 630*y^5 + 5661*y^4 - 520*y^3 + 7380*y^2 + 3280, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280)
 

\( x^{12} + 27 x^{10} - 20 x^{9} + 324 x^{8} - 210 x^{7} + 1968 x^{6} - 630 x^{5} + 5661 x^{4} + \cdots + 3280 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(446676160500000000\) \(\medspace = 2^{8}\cdot 3^{12}\cdot 5^{9}\cdot 41^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.57\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{79/54}5^{3/4}41^{2/3}\approx 396.69567102648426$
Ramified primes:   \(2\), \(3\), \(5\), \(41\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{8}a^{10}-\frac{1}{4}a^{9}+\frac{3}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}+\frac{1}{8}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{43\!\cdots\!64}a^{11}-\frac{999690133719313}{21\!\cdots\!32}a^{10}-\frac{25\!\cdots\!89}{43\!\cdots\!64}a^{9}+\frac{69\!\cdots\!43}{21\!\cdots\!32}a^{8}+\frac{52\!\cdots\!17}{10\!\cdots\!16}a^{7}-\frac{10\!\cdots\!73}{21\!\cdots\!32}a^{6}-\frac{54\!\cdots\!39}{10\!\cdots\!16}a^{5}-\frac{38\!\cdots\!87}{21\!\cdots\!32}a^{4}-\frac{64\!\cdots\!31}{43\!\cdots\!64}a^{3}-\frac{33\!\cdots\!73}{21\!\cdots\!32}a^{2}+\frac{972370001877287}{10\!\cdots\!16}a+\frac{951882889208629}{27\!\cdots\!79}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{15500786844339}{21949826369785432} a^{11} + \frac{27751140888123}{21949826369785432} a^{10} + \frac{375609142391647}{21949826369785432} a^{9} + \frac{406838397290229}{21949826369785432} a^{8} + \frac{1713425502939873}{10974913184892716} a^{7} + \frac{2848304050558959}{10974913184892716} a^{6} + \frac{7185128607484389}{10974913184892716} a^{5} + \frac{20488579510413213}{10974913184892716} a^{4} + \frac{25054598797503653}{21949826369785432} a^{3} + \frac{98360570878469451}{21949826369785432} a^{2} + \frac{15072739802154837}{10974913184892716} a + \frac{19199617478949547}{5487456592446358} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{61873534468611}{43\!\cdots\!64}a^{11}-\frac{24911570421327}{10\!\cdots\!16}a^{10}+\frac{15\!\cdots\!09}{43\!\cdots\!64}a^{9}-\frac{462227327967303}{54\!\cdots\!58}a^{8}+\frac{25\!\cdots\!39}{54\!\cdots\!58}a^{7}-\frac{18\!\cdots\!27}{21\!\cdots\!32}a^{6}+\frac{14\!\cdots\!31}{54\!\cdots\!58}a^{5}-\frac{79\!\cdots\!81}{21\!\cdots\!32}a^{4}+\frac{25\!\cdots\!15}{43\!\cdots\!64}a^{3}-\frac{61\!\cdots\!75}{10\!\cdots\!16}a^{2}+\frac{98\!\cdots\!11}{27\!\cdots\!79}a-\frac{13\!\cdots\!01}{54\!\cdots\!58}$, $\frac{241557734742275}{43\!\cdots\!64}a^{11}+\frac{264164236695787}{21\!\cdots\!32}a^{10}+\frac{62\!\cdots\!97}{43\!\cdots\!64}a^{9}+\frac{45\!\cdots\!79}{21\!\cdots\!32}a^{8}+\frac{15\!\cdots\!29}{10\!\cdots\!16}a^{7}+\frac{57\!\cdots\!37}{21\!\cdots\!32}a^{6}+\frac{74\!\cdots\!73}{10\!\cdots\!16}a^{5}+\frac{40\!\cdots\!35}{21\!\cdots\!32}a^{4}+\frac{69\!\cdots\!47}{43\!\cdots\!64}a^{3}+\frac{11\!\cdots\!83}{21\!\cdots\!32}a^{2}+\frac{17\!\cdots\!59}{10\!\cdots\!16}a+\frac{12\!\cdots\!28}{27\!\cdots\!79}$, $\frac{17884785338191}{54\!\cdots\!58}a^{11}+\frac{306516086871749}{21\!\cdots\!32}a^{10}+\frac{693721799736925}{10\!\cdots\!16}a^{9}+\frac{50\!\cdots\!95}{21\!\cdots\!32}a^{8}+\frac{32\!\cdots\!11}{10\!\cdots\!16}a^{7}+\frac{14\!\cdots\!53}{54\!\cdots\!58}a^{6}+\frac{92\!\cdots\!59}{10\!\cdots\!16}a^{5}+\frac{54\!\cdots\!05}{54\!\cdots\!58}a^{4}+\frac{21\!\cdots\!67}{10\!\cdots\!16}a^{3}+\frac{33\!\cdots\!81}{21\!\cdots\!32}a^{2}+\frac{16\!\cdots\!99}{10\!\cdots\!16}a+\frac{39\!\cdots\!43}{54\!\cdots\!58}$, $\frac{7109739667085}{54\!\cdots\!58}a^{11}-\frac{24588395389913}{27\!\cdots\!79}a^{10}+\frac{220645857332821}{54\!\cdots\!58}a^{9}-\frac{618944648395724}{27\!\cdots\!79}a^{8}+\frac{18\!\cdots\!17}{27\!\cdots\!79}a^{7}-\frac{64\!\cdots\!97}{27\!\cdots\!79}a^{6}+\frac{11\!\cdots\!35}{27\!\cdots\!79}a^{5}-\frac{26\!\cdots\!86}{27\!\cdots\!79}a^{4}+\frac{54\!\cdots\!51}{54\!\cdots\!58}a^{3}-\frac{35\!\cdots\!67}{27\!\cdots\!79}a^{2}+\frac{16\!\cdots\!26}{27\!\cdots\!79}a-\frac{37\!\cdots\!71}{27\!\cdots\!79}$, $\frac{14626665921023}{54\!\cdots\!58}a^{11}-\frac{91156048538759}{21\!\cdots\!32}a^{10}+\frac{722833290373991}{10\!\cdots\!16}a^{9}-\frac{33\!\cdots\!65}{21\!\cdots\!32}a^{8}+\frac{86\!\cdots\!33}{10\!\cdots\!16}a^{7}-\frac{81\!\cdots\!55}{54\!\cdots\!58}a^{6}+\frac{45\!\cdots\!95}{10\!\cdots\!16}a^{5}-\frac{30\!\cdots\!07}{54\!\cdots\!58}a^{4}+\frac{77\!\cdots\!55}{10\!\cdots\!16}a^{3}-\frac{17\!\cdots\!75}{21\!\cdots\!32}a^{2}+\frac{35\!\cdots\!45}{10\!\cdots\!16}a-\frac{20\!\cdots\!39}{54\!\cdots\!58}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 27699.7184504 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 27699.7184504 \cdot 1}{10\cdot\sqrt{446676160500000000}}\cr\approx \mathstrut & 0.255010567485 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 27*x^10 - 20*x^9 + 324*x^8 - 210*x^7 + 1968*x^6 - 630*x^5 + 5661*x^4 - 520*x^3 + 7380*x^2 + 3280);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^3:(C_4\times S_3)$ (as 12T170):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 648
The 30 conjugacy class representatives for $C_3^3:(C_4\times S_3)$
Character table for $C_3^3:(C_4\times S_3)$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.12.0.1}{12} }$ ${\href{/padicField/11.3.0.1}{3} }^{4}$ ${\href{/padicField/13.12.0.1}{12} }$ ${\href{/padicField/17.12.0.1}{12} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ ${\href{/padicField/37.12.0.1}{12} }$ R ${\href{/padicField/43.12.0.1}{12} }$ ${\href{/padicField/47.4.0.1}{4} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.0.1$x^{4} + x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
\(3\) Copy content Toggle raw display 3.12.12.7$x^{12} + 6 x^{11} + 24 x^{10} + 48 x^{9} + 576 x^{8} + 5508 x^{7} + 19710 x^{6} + 29538 x^{5} + 13608 x^{4} - 3456 x^{3} + 1458 x^{2} - 324 x + 81$$3$$4$$12$12T119$[3/2, 3/2, 3/2]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
\(41\) Copy content Toggle raw display $\Q_{41}$$x + 35$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 35$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 35$$1$$1$$0$Trivial$[\ ]$
41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.3.2.1$x^{3} + 41$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$