Normalized defining polynomial
\( x^{12} - 8 x^{10} + 34 x^{8} - 26 x^{6} - 247 x^{4} + 722 x^{2} + 361 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4452139149819904=2^{18}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{186} a^{8} + \frac{11}{62} a^{6} + \frac{23}{62} a^{4} - \frac{25}{93} a^{2} - \frac{53}{186}$, $\frac{1}{7068} a^{9} - \frac{237}{2356} a^{7} - \frac{1}{4} a^{6} + \frac{271}{2356} a^{5} - \frac{1}{2} a^{4} + \frac{592}{1767} a^{3} + \frac{1}{4} a^{2} + \frac{7}{372} a + \frac{1}{4}$, $\frac{1}{21204} a^{10} + \frac{11}{21204} a^{8} - \frac{1}{4} a^{7} - \frac{11}{2356} a^{6} - \frac{1}{2} a^{5} + \frac{1355}{10602} a^{4} + \frac{1}{4} a^{3} - \frac{73}{372} a^{2} + \frac{1}{4} a + \frac{101}{279}$, $\frac{1}{21204} a^{11} - \frac{1}{21204} a^{9} - \frac{1}{372} a^{8} - \frac{241}{2356} a^{7} + \frac{5}{31} a^{6} - \frac{3523}{10602} a^{5} + \frac{39}{124} a^{4} - \frac{257}{7068} a^{3} + \frac{143}{372} a^{2} - \frac{119}{558} a + \frac{73}{186}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 761.462514223 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 4 conjugacy class representatives for $A_4$ |
| Character table for $A_4$ |
Intermediate fields
| 3.3.361.1, 4.0.23104.1 x4, 6.2.8340544.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.59 | $x^{12} - 2 x^{11} + 6 x^{10} + 4 x^{9} + 6 x^{8} + 12 x^{7} - 4 x^{6} - 8 x^{3} + 16 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4$ | $[2, 2]^{3}$ |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |