Properties

Label 12.0.4452139149819904.7
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 19^{8}$
Root discriminant $20.14$
Ramified primes $2, 19$
Class number $1$
Class group Trivial
Galois group $A_4$ (as 12T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![361, 0, 722, 0, -247, 0, -26, 0, 34, 0, -8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 8*x^10 + 34*x^8 - 26*x^6 - 247*x^4 + 722*x^2 + 361)
 
gp: K = bnfinit(x^12 - 8*x^10 + 34*x^8 - 26*x^6 - 247*x^4 + 722*x^2 + 361, 1)
 

Normalized defining polynomial

\( x^{12} - 8 x^{10} + 34 x^{8} - 26 x^{6} - 247 x^{4} + 722 x^{2} + 361 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4452139149819904=2^{18}\cdot 19^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{186} a^{8} + \frac{11}{62} a^{6} + \frac{23}{62} a^{4} - \frac{25}{93} a^{2} - \frac{53}{186}$, $\frac{1}{7068} a^{9} - \frac{237}{2356} a^{7} - \frac{1}{4} a^{6} + \frac{271}{2356} a^{5} - \frac{1}{2} a^{4} + \frac{592}{1767} a^{3} + \frac{1}{4} a^{2} + \frac{7}{372} a + \frac{1}{4}$, $\frac{1}{21204} a^{10} + \frac{11}{21204} a^{8} - \frac{1}{4} a^{7} - \frac{11}{2356} a^{6} - \frac{1}{2} a^{5} + \frac{1355}{10602} a^{4} + \frac{1}{4} a^{3} - \frac{73}{372} a^{2} + \frac{1}{4} a + \frac{101}{279}$, $\frac{1}{21204} a^{11} - \frac{1}{21204} a^{9} - \frac{1}{372} a^{8} - \frac{241}{2356} a^{7} + \frac{5}{31} a^{6} - \frac{3523}{10602} a^{5} + \frac{39}{124} a^{4} - \frac{257}{7068} a^{3} + \frac{143}{372} a^{2} - \frac{119}{558} a + \frac{73}{186}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 761.462514223 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_4$ (as 12T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 4 conjugacy class representatives for $A_4$
Character table for $A_4$

Intermediate fields

3.3.361.1, 4.0.23104.1 x4, 6.2.8340544.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 sibling: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.18.59$x^{12} - 2 x^{11} + 6 x^{10} + 4 x^{9} + 6 x^{8} + 12 x^{7} - 4 x^{6} - 8 x^{3} + 16 x^{2} - 8$$4$$3$$18$$A_4$$[2, 2]^{3}$
$19$19.3.2.2$x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.2$x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.2$x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$
19.3.2.2$x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$