Normalized defining polynomial
\( x^{12} - 4 x^{11} + 10 x^{10} - 36 x^{9} + 98 x^{8} - 180 x^{7} + 400 x^{6} - 1012 x^{5} + 1721 x^{4} - 1720 x^{3} + 1018 x^{2} - 336 x + 50 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44047357079191552=2^{31}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5781633299} a^{11} + \frac{61666385}{5781633299} a^{10} + \frac{1179149103}{5781633299} a^{9} - \frac{18225713}{444741023} a^{8} + \frac{3535921}{59604467} a^{7} - \frac{2435018146}{5781633299} a^{6} - \frac{3173514}{444741023} a^{5} - \frac{2615747639}{5781633299} a^{4} + \frac{1260285717}{5781633299} a^{3} - \frac{566290511}{5781633299} a^{2} - \frac{2685840565}{5781633299} a + \frac{1581918341}{5781633299}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1084286}{4584959} a^{11} + \frac{4302073}{4584959} a^{10} - \frac{10395690}{4584959} a^{9} + \frac{37674385}{4584959} a^{8} - \frac{102860866}{4584959} a^{7} + \frac{182728700}{4584959} a^{6} - \frac{404978562}{4584959} a^{5} + \frac{1049374675}{4584959} a^{4} - \frac{1743517760}{4584959} a^{3} + \frac{1572749373}{4584959} a^{2} - \frac{731373112}{4584959} a + \frac{146226513}{4584959} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19554.5458202 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $D_6:D_6$ |
| Character table for $D_6:D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.14848.1, 6.0.861184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.9.4 | $x^{4} + 2 x^{2} + 10$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.8.22.102 | $x^{8} + 8 x^{7} + 16 x^{5} + 144$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.5.1 | $x^{6} - 29$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |