Properties

Label 12.0.43088909514...4256.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{6}\cdot 3^{21}\cdot 23^{5}$
Root discriminant $35.72$
Ramified primes $2, 3, 23$
Class number $1$
Class group Trivial
Galois group $C_3:S_4$ (as 12T44)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8, -84, 786, -1663, 1845, -1404, 918, -423, 171, -50, 12, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 12*x^10 - 50*x^9 + 171*x^8 - 423*x^7 + 918*x^6 - 1404*x^5 + 1845*x^4 - 1663*x^3 + 786*x^2 - 84*x + 8)
 
gp: K = bnfinit(x^12 - 3*x^11 + 12*x^10 - 50*x^9 + 171*x^8 - 423*x^7 + 918*x^6 - 1404*x^5 + 1845*x^4 - 1663*x^3 + 786*x^2 - 84*x + 8, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{11} + 12 x^{10} - 50 x^{9} + 171 x^{8} - 423 x^{7} + 918 x^{6} - 1404 x^{5} + 1845 x^{4} - 1663 x^{3} + 786 x^{2} - 84 x + 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4308890951402024256=2^{6}\cdot 3^{21}\cdot 23^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{9}{20} a^{6} - \frac{3}{20} a^{5} - \frac{1}{10} a^{4} - \frac{1}{10} a^{3} - \frac{9}{20} a^{2} - \frac{9}{20} a + \frac{1}{10}$, $\frac{1}{321858157840} a^{11} - \frac{4559203189}{321858157840} a^{10} + \frac{1408634591}{160929078920} a^{9} - \frac{7992925771}{32185815784} a^{8} - \frac{62798797377}{321858157840} a^{7} + \frac{13816557799}{64371631568} a^{6} + \frac{4707415069}{40232269730} a^{5} - \frac{23534611741}{80464539460} a^{4} - \frac{78432170627}{321858157840} a^{3} - \frac{19829178461}{64371631568} a^{2} - \frac{9932278623}{80464539460} a - \frac{22513378211}{80464539460}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 190602.405857 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:S_4$ (as 12T44):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $C_3:S_4$
Character table for $C_3:S_4$

Intermediate fields

3.3.621.1, 4.0.22356.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$3$3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.9.18.2$x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$$9$$1$$18$$C_3^2:C_2$$[3/2, 5/2]_{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$