Normalized defining polynomial
\( x^{12} - 4 x^{11} + 28 x^{10} - 65 x^{9} + 581 x^{8} + 310 x^{7} + 8967 x^{6} + 19812 x^{5} + 145651 x^{4} - 119595 x^{3} + 47535 x^{2} - 7125 x + 9025 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(426445518720500000000=2^{8}\cdot 5^{9}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{10} + \frac{1}{15} a^{9} - \frac{2}{15} a^{8} + \frac{1}{3} a^{7} - \frac{4}{15} a^{6} + \frac{2}{15} a^{4} + \frac{2}{15} a^{3} + \frac{1}{15} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{320120744927743599734225223735} a^{11} + \frac{3360379986472964195663738573}{106706914975914533244741741245} a^{10} + \frac{43850533807507998395776191461}{320120744927743599734225223735} a^{9} - \frac{48222814027642343488729025761}{320120744927743599734225223735} a^{8} + \frac{10094465523805264813634930562}{106706914975914533244741741245} a^{7} - \frac{26303247789574172619435975247}{320120744927743599734225223735} a^{6} - \frac{127849610610859340186896333088}{320120744927743599734225223735} a^{5} + \frac{97415485310465276318882208593}{320120744927743599734225223735} a^{4} + \frac{86084709109081857899896504487}{320120744927743599734225223735} a^{3} + \frac{149858461118616945536477275078}{320120744927743599734225223735} a^{2} + \frac{22581392133310973685555821129}{64024148985548719946845044747} a + \frac{273498671332440046971854486}{1123230683956995086786755171}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{531937474867407624150086}{106706914975914533244741741245} a^{11} - \frac{2798653472520114149677332}{106706914975914533244741741245} a^{10} + \frac{3713963809355736886198665}{21341382995182906648948348249} a^{9} - \frac{56617826671168496088543219}{106706914975914533244741741245} a^{8} + \frac{379080550873169071801322106}{106706914975914533244741741245} a^{7} - \frac{283146328248990069941575503}{106706914975914533244741741245} a^{6} + \frac{5123297590539664311268713132}{106706914975914533244741741245} a^{5} + \frac{5265261205754200624907303826}{106706914975914533244741741245} a^{4} + \frac{14678034980672696868811961751}{21341382995182906648948348249} a^{3} - \frac{133570384400722236702636712563}{106706914975914533244741741245} a^{2} + \frac{51693015021337717923097464907}{21341382995182906648948348249} a - \frac{225099083529739137597994563}{1123230683956995086786755171} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10042.6435644 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.19220.1 x3, \(\Q(\zeta_{5})\), 6.6.1847042000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |