Normalized defining polynomial
\( x^{12} - 2 x^{11} + 75 x^{10} - 122 x^{9} + 2619 x^{8} - 3418 x^{7} + 53384 x^{6} - 53204 x^{5} + 664294 x^{4} - 455716 x^{3} + 4767669 x^{2} - 1713202 x + 15418831 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4251690914950152454144=2^{18}\cdot 7^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(69,·)$, $\chi_{728}(225,·)$, $\chi_{728}(393,·)$, $\chi_{728}(237,·)$, $\chi_{728}(337,·)$, $\chi_{728}(685,·)$, $\chi_{728}(113,·)$, $\chi_{728}(181,·)$, $\chi_{728}(673,·)$, $\chi_{728}(573,·)$, $\chi_{728}(517,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{15} a^{10} + \frac{2}{15} a^{9} - \frac{4}{15} a^{8} - \frac{7}{15} a^{7} + \frac{4}{15} a^{6} + \frac{2}{15} a^{5} - \frac{2}{5} a^{4} - \frac{2}{15} a^{3} + \frac{1}{5} a^{2} - \frac{1}{3} a - \frac{2}{15}$, $\frac{1}{10982489237237139611328705} a^{11} + \frac{68212288104714263967752}{2196497847447427922265741} a^{10} + \frac{241308834123499978423579}{3660829745745713203776235} a^{9} + \frac{1140501584388647870533112}{3660829745745713203776235} a^{8} + \frac{3191411786128018178348678}{10982489237237139611328705} a^{7} - \frac{1087685613721603949972336}{10982489237237139611328705} a^{6} + \frac{116869681042754662045934}{2196497847447427922265741} a^{5} + \frac{274058348708239618041815}{2196497847447427922265741} a^{4} + \frac{3844955799481417199349317}{10982489237237139611328705} a^{3} + \frac{4611059538211017814887454}{10982489237237139611328705} a^{2} + \frac{142702592275675383747226}{3660829745745713203776235} a - \frac{20437687571684852516111}{83835795704100302376555}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{168}$, which has order $4536$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.78403136265631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-182}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\sqrt{13}, \sqrt{-14})\), 6.0.65204991488.6, 6.0.5015768576.6, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |