Normalized defining polynomial
\( x^{12} - 1778 x^{9} + 822833 x^{6} - 64516000 x^{3} + 32005984375 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(422882579117748274920892556361=3^{18}\cdot 127^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $294.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1143=3^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1143}(1,·)$, $\chi_{1143}(869,·)$, $\chi_{1143}(742,·)$, $\chi_{1143}(362,·)$, $\chi_{1143}(781,·)$, $\chi_{1143}(401,·)$, $\chi_{1143}(274,·)$, $\chi_{1143}(1142,·)$, $\chi_{1143}(890,·)$, $\chi_{1143}(997,·)$, $\chi_{1143}(253,·)$, $\chi_{1143}(146,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{254} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{1270} a^{7} + \frac{1}{10} a^{4} - \frac{1}{10} a$, $\frac{1}{6350} a^{8} + \frac{11}{50} a^{5} - \frac{21}{50} a^{2}$, $\frac{1}{117576377750} a^{9} - \frac{655132}{462899125} a^{6} - \frac{178598448}{462899125} a^{3} + \frac{153}{58318}$, $\frac{1}{587881888750} a^{10} - \frac{655132}{2314495625} a^{7} - \frac{1104396698}{2314495625} a^{4} - \frac{11633}{58318} a$, $\frac{1}{373304999356250} a^{11} + \frac{2334611}{2939409443750} a^{8} - \frac{24890850521}{2939409443750} a^{5} - \frac{32118562}{92579825} a^{2}$
Class group and class number
$C_{4}\times C_{4}\times C_{48}\times C_{1680}$, which has order $1290240$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2}{35607625} a^{9} - \frac{1931}{35607625} a^{6} + \frac{1708}{280375} a^{3} - \frac{3755}{2243} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60076.605409926466 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-127}) \), \(\Q(\sqrt{381}) \), \(\Q(\sqrt{-3}) \), 3.3.1306449.2, \(\Q(\sqrt{-3}, \sqrt{-127})\), 6.0.216764741679327.2, 6.6.650294225037981.2, 6.0.5120426968803.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.51 | $x^{12} + 27 x^{11} + 15 x^{10} + 36 x^{9} - 36 x^{8} - 18 x^{7} + 21 x^{6} - 18 x^{4} + 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $127$ | 127.6.5.5 | $x^{6} + 92583$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 127.6.5.5 | $x^{6} + 92583$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |