Properties

Label 12.0.40712520501...8944.4
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 13^{6}$
Root discriminant $63.21$
Ramified primes $2, 3, 7, 13$
Class number $1792$ (GRH)
Class group $[2, 4, 4, 56]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3269113, -1067418, 1243465, -369700, 230015, -57464, 24737, -5066, 1625, -250, 61, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 61*x^10 - 250*x^9 + 1625*x^8 - 5066*x^7 + 24737*x^6 - 57464*x^5 + 230015*x^4 - 369700*x^3 + 1243465*x^2 - 1067418*x + 3269113)
 
gp: K = bnfinit(x^12 - 6*x^11 + 61*x^10 - 250*x^9 + 1625*x^8 - 5066*x^7 + 24737*x^6 - 57464*x^5 + 230015*x^4 - 369700*x^3 + 1243465*x^2 - 1067418*x + 3269113, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 61 x^{10} - 250 x^{9} + 1625 x^{8} - 5066 x^{7} + 24737 x^{6} - 57464 x^{5} + 230015 x^{4} - 369700 x^{3} + 1243465 x^{2} - 1067418 x + 3269113 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4071252050148030418944=2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 13^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $63.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1092=2^{2}\cdot 3\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1092}(1,·)$, $\chi_{1092}(1091,·)$, $\chi_{1092}(389,·)$, $\chi_{1092}(391,·)$, $\chi_{1092}(233,·)$, $\chi_{1092}(781,·)$, $\chi_{1092}(625,·)$, $\chi_{1092}(467,·)$, $\chi_{1092}(311,·)$, $\chi_{1092}(859,·)$, $\chi_{1092}(701,·)$, $\chi_{1092}(703,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6721242109} a^{10} - \frac{5}{6721242109} a^{9} + \frac{703538898}{6721242109} a^{8} - \frac{2814155562}{6721242109} a^{7} - \frac{2591561768}{6721242109} a^{6} - \frac{2539496577}{6721242109} a^{5} + \frac{2489456362}{6721242109} a^{4} + \frac{2691642201}{6721242109} a^{3} + \frac{1945281637}{6721242109} a^{2} + \frac{115294813}{6721242109} a - \frac{3085745779}{6721242109}$, $\frac{1}{746669507130919} a^{11} + \frac{55540}{746669507130919} a^{10} + \frac{311449620108015}{746669507130919} a^{9} + \frac{130894142384897}{746669507130919} a^{8} + \frac{238322868176877}{746669507130919} a^{7} + \frac{161912726754126}{746669507130919} a^{6} + \frac{283903405670531}{746669507130919} a^{5} - \frac{292316830443594}{746669507130919} a^{4} - \frac{127002689028078}{746669507130919} a^{3} + \frac{174019775121813}{746669507130919} a^{2} + \frac{237107600033731}{746669507130919} a + \frac{16124905546545}{746669507130919}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{4}\times C_{56}$, which has order $1792$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 246.50546308257188 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\sqrt{-273}) \), \(\Q(\sqrt{-39}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{7}, \sqrt{-39})\), \(\Q(\zeta_{28})^+\), 6.0.63806363712.2, 6.0.142424919.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3}$
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$