Normalized defining polynomial
\( x^{12} - 6 x^{11} + 61 x^{10} - 250 x^{9} + 1625 x^{8} - 5066 x^{7} + 24737 x^{6} - 57464 x^{5} + 230015 x^{4} - 369700 x^{3} + 1243465 x^{2} - 1067418 x + 3269113 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4071252050148030418944=2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1092=2^{2}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1092}(1,·)$, $\chi_{1092}(1091,·)$, $\chi_{1092}(389,·)$, $\chi_{1092}(391,·)$, $\chi_{1092}(233,·)$, $\chi_{1092}(781,·)$, $\chi_{1092}(625,·)$, $\chi_{1092}(467,·)$, $\chi_{1092}(311,·)$, $\chi_{1092}(859,·)$, $\chi_{1092}(701,·)$, $\chi_{1092}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6721242109} a^{10} - \frac{5}{6721242109} a^{9} + \frac{703538898}{6721242109} a^{8} - \frac{2814155562}{6721242109} a^{7} - \frac{2591561768}{6721242109} a^{6} - \frac{2539496577}{6721242109} a^{5} + \frac{2489456362}{6721242109} a^{4} + \frac{2691642201}{6721242109} a^{3} + \frac{1945281637}{6721242109} a^{2} + \frac{115294813}{6721242109} a - \frac{3085745779}{6721242109}$, $\frac{1}{746669507130919} a^{11} + \frac{55540}{746669507130919} a^{10} + \frac{311449620108015}{746669507130919} a^{9} + \frac{130894142384897}{746669507130919} a^{8} + \frac{238322868176877}{746669507130919} a^{7} + \frac{161912726754126}{746669507130919} a^{6} + \frac{283903405670531}{746669507130919} a^{5} - \frac{292316830443594}{746669507130919} a^{4} - \frac{127002689028078}{746669507130919} a^{3} + \frac{174019775121813}{746669507130919} a^{2} + \frac{237107600033731}{746669507130919} a + \frac{16124905546545}{746669507130919}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{56}$, which has order $1792$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246.50546308257188 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-273}) \), \(\Q(\sqrt{-39}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{7}, \sqrt{-39})\), \(\Q(\zeta_{28})^+\), 6.0.63806363712.2, 6.0.142424919.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |