Normalized defining polynomial
\( x^{12} - 2 x^{11} + 16 x^{10} - 24 x^{9} + 111 x^{8} - 101 x^{7} + 566 x^{6} - 314 x^{5} + 1256 x^{4} + \cdots + 1789 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4032054328696714817\) \(\medspace = 7^{6}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.52\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{1/2}17^{11/12}\approx 35.51898373246793$ | ||
Ramified primes: | \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{94}a^{10}+\frac{17}{94}a^{9}+\frac{33}{94}a^{8}-\frac{20}{47}a^{7}-\frac{31}{94}a^{6}+\frac{35}{94}a^{5}-\frac{23}{47}a^{4}+\frac{20}{47}a^{3}-\frac{29}{94}a^{2}+\frac{3}{94}a-\frac{41}{94}$, $\frac{1}{66118799882434}a^{11}+\frac{79844269959}{66118799882434}a^{10}-\frac{14687626133893}{66118799882434}a^{9}-\frac{1695760126149}{33059399941217}a^{8}+\frac{11390047555729}{66118799882434}a^{7}+\frac{1225984077111}{66118799882434}a^{6}-\frac{133161608911}{703391488111}a^{5}+\frac{8720567002306}{33059399941217}a^{4}-\frac{21948503719349}{66118799882434}a^{3}-\frac{19961313729457}{66118799882434}a^{2}-\frac{13910542351241}{66118799882434}a-\frac{4338546507884}{33059399941217}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{80952492386}{33059399941217}a^{11}-\frac{208857866008}{33059399941217}a^{10}+\frac{1234905674494}{33059399941217}a^{9}-\frac{2054164918212}{33059399941217}a^{8}+\frac{6927568016449}{33059399941217}a^{7}-\frac{5130371448060}{33059399941217}a^{6}+\frac{26690714021444}{33059399941217}a^{5}-\frac{11416386768611}{33059399941217}a^{4}+\frac{16446562695653}{33059399941217}a^{3}-\frac{45502732270935}{33059399941217}a^{2}-\frac{60681033881803}{33059399941217}a+\frac{68270214840082}{33059399941217}$, $\frac{82188154973}{33059399941217}a^{11}-\frac{454010707349}{66118799882434}a^{10}+\frac{3441786095821}{66118799882434}a^{9}-\frac{6553930142341}{66118799882434}a^{8}+\frac{13804176238654}{33059399941217}a^{7}-\frac{29137760740591}{66118799882434}a^{6}+\frac{123648767999893}{66118799882434}a^{5}-\frac{20985873082578}{33059399941217}a^{4}+\frac{152147219613430}{33059399941217}a^{3}-\frac{24197818423997}{66118799882434}a^{2}+\frac{304691185667805}{66118799882434}a-\frac{81224376219629}{66118799882434}$, $\frac{22494529761}{33059399941217}a^{11}-\frac{35238372457}{33059399941217}a^{10}+\frac{331249283889}{33059399941217}a^{9}-\frac{307752982672}{33059399941217}a^{8}+\frac{43761708139}{703391488111}a^{7}+\frac{80749521998}{33059399941217}a^{6}+\frac{8430740045419}{33059399941217}a^{5}+\frac{3918811431560}{33059399941217}a^{4}+\frac{10507145394930}{33059399941217}a^{3}-\frac{4080073232305}{33059399941217}a^{2}-\frac{6630377589530}{33059399941217}a-\frac{5375784398871}{33059399941217}$, $\frac{25987226358}{33059399941217}a^{11}-\frac{7601562776}{33059399941217}a^{10}+\frac{397308297962}{33059399941217}a^{9}-\frac{88520136970}{33059399941217}a^{8}+\frac{2902861825405}{33059399941217}a^{7}+\frac{1058150964340}{33059399941217}a^{6}+\frac{17431324865724}{33059399941217}a^{5}+\frac{17916288419223}{33059399941217}a^{4}+\frac{57721290105845}{33059399941217}a^{3}+\frac{18255952431283}{33059399941217}a^{2}+\frac{16788631626709}{33059399941217}a-\frac{41527970827294}{33059399941217}$, $\frac{763366073589}{66118799882434}a^{11}-\frac{997913728099}{66118799882434}a^{10}+\frac{11949950727355}{66118799882434}a^{9}-\frac{5483836053640}{33059399941217}a^{8}+\frac{83767977621051}{66118799882434}a^{7}-\frac{28825633214727}{66118799882434}a^{6}+\frac{226023844270570}{33059399941217}a^{5}+\frac{24407267609783}{33059399941217}a^{4}+\frac{11\!\cdots\!59}{66118799882434}a^{3}-\frac{479373089985925}{66118799882434}a^{2}+\frac{559599366419321}{66118799882434}a-\frac{852160484839126}{33059399941217}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7218.657057374844 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 7218.657057374844 \cdot 2}{2\cdot\sqrt{4032054328696714817}}\cr\approx \mathstrut & 0.221193536578973 \end{aligned}\]
Galois group
$C_4\times S_3$ (as 12T11):
A solvable group of order 24 |
The 12 conjugacy class representatives for $S_3 \times C_4$ |
Character table for $S_3 \times C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.1.2023.1, 4.0.240737.1, 6.2.69572993.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 24 |
Degree 12 sibling: | 12.4.82286823034626833.1 |
Minimal sibling: | 12.4.82286823034626833.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\) | 7.4.2.2 | $x^{4} - 42 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
7.8.4.1 | $x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.119.2t1.a.a | $1$ | $ 7 \cdot 17 $ | \(\Q(\sqrt{-119}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.17.4t1.a.a | $1$ | $ 17 $ | 4.4.4913.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
* | 1.119.4t1.a.a | $1$ | $ 7 \cdot 17 $ | 4.0.240737.1 | $C_4$ (as 4T1) | $0$ | $-1$ |
1.17.4t1.a.b | $1$ | $ 17 $ | 4.4.4913.1 | $C_4$ (as 4T1) | $0$ | $1$ | |
* | 1.119.4t1.a.b | $1$ | $ 7 \cdot 17 $ | 4.0.240737.1 | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 2.2023.3t2.b.a | $2$ | $ 7 \cdot 17^{2}$ | 3.1.2023.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.2023.6t3.b.a | $2$ | $ 7 \cdot 17^{2}$ | 6.0.487010951.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.2023.12t11.b.a | $2$ | $ 7 \cdot 17^{2}$ | 12.0.4032054328696714817.1 | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ |
* | 2.2023.12t11.b.b | $2$ | $ 7 \cdot 17^{2}$ | 12.0.4032054328696714817.1 | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ |