Normalized defining polynomial
\( x^{12} - 4 x^{11} + 41 x^{10} - 130 x^{9} + 945 x^{8} - 2044 x^{7} + 12317 x^{6} - 19586 x^{5} + \cdots + 1704149 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(396229730290715706724352\) \(\medspace = 2^{12}\cdot 13^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(92.58\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 13^{2/3}17^{3/4}\approx 92.57539808355045$ | ||
Ramified primes: | \(2\), \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(884=2^{2}\cdot 13\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{884}(1,·)$, $\chi_{884}(373,·)$, $\chi_{884}(599,·)$, $\chi_{884}(523,·)$, $\chi_{884}(781,·)$, $\chi_{884}(237,·)$, $\chi_{884}(659,·)$, $\chi_{884}(341,·)$, $\chi_{884}(183,·)$, $\chi_{884}(55,·)$, $\chi_{884}(477,·)$, $\chi_{884}(191,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.78608.1$^{2}$, 12.0.396229730290715706724352.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{37967122}a^{10}-\frac{653596}{18983561}a^{9}+\frac{4289667}{37967122}a^{8}+\frac{16298135}{37967122}a^{7}-\frac{2708460}{18983561}a^{6}+\frac{5896178}{18983561}a^{5}-\frac{8258911}{18983561}a^{4}+\frac{10886001}{37967122}a^{3}+\frac{557468}{18983561}a^{2}+\frac{6580857}{37967122}a+\frac{13999507}{37967122}$, $\frac{1}{19\!\cdots\!18}a^{11}+\frac{2473506753}{19\!\cdots\!18}a^{10}+\frac{13\!\cdots\!73}{19\!\cdots\!18}a^{9}+\frac{31\!\cdots\!87}{95\!\cdots\!09}a^{8}+\frac{68\!\cdots\!09}{19\!\cdots\!18}a^{7}+\frac{27\!\cdots\!19}{95\!\cdots\!09}a^{6}-\frac{24\!\cdots\!24}{95\!\cdots\!09}a^{5}+\frac{47\!\cdots\!69}{19\!\cdots\!18}a^{4}-\frac{10\!\cdots\!75}{19\!\cdots\!18}a^{3}-\frac{89\!\cdots\!61}{19\!\cdots\!18}a^{2}-\frac{42\!\cdots\!51}{95\!\cdots\!09}a+\frac{55\!\cdots\!99}{19\!\cdots\!18}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{6}\times C_{222}$, which has order $1332$ (assuming GRH)
Relative class number: $1332$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{76606174412}{95\!\cdots\!09}a^{11}+\frac{260978061466}{95\!\cdots\!09}a^{10}-\frac{2650509508552}{95\!\cdots\!09}a^{9}+\frac{24247638529406}{95\!\cdots\!09}a^{8}-\frac{100392558045800}{95\!\cdots\!09}a^{7}+\frac{576401589760214}{95\!\cdots\!09}a^{6}-\frac{19\!\cdots\!98}{95\!\cdots\!09}a^{5}+\frac{65\!\cdots\!29}{95\!\cdots\!09}a^{4}-\frac{18\!\cdots\!18}{95\!\cdots\!09}a^{3}+\frac{49\!\cdots\!01}{95\!\cdots\!09}a^{2}-\frac{52\!\cdots\!10}{95\!\cdots\!09}a+\frac{14\!\cdots\!97}{95\!\cdots\!09}$, $\frac{245861562124}{95\!\cdots\!09}a^{11}+\frac{1551653461166}{95\!\cdots\!09}a^{10}-\frac{5459097107964}{95\!\cdots\!09}a^{9}+\frac{89921813275141}{95\!\cdots\!09}a^{8}-\frac{240733711485784}{95\!\cdots\!09}a^{7}+\frac{20\!\cdots\!24}{95\!\cdots\!09}a^{6}-\frac{42\!\cdots\!90}{95\!\cdots\!09}a^{5}+\frac{25\!\cdots\!94}{95\!\cdots\!09}a^{4}-\frac{35\!\cdots\!22}{95\!\cdots\!09}a^{3}+\frac{18\!\cdots\!11}{95\!\cdots\!09}a^{2}-\frac{89\!\cdots\!22}{95\!\cdots\!09}a+\frac{83\!\cdots\!43}{95\!\cdots\!09}$, $\frac{1058199343816}{95\!\cdots\!09}a^{11}-\frac{11843703380354}{95\!\cdots\!09}a^{10}+\frac{71063391914484}{95\!\cdots\!09}a^{9}-\frac{369818424259686}{95\!\cdots\!09}a^{8}+\frac{15\!\cdots\!84}{95\!\cdots\!09}a^{7}-\frac{64\!\cdots\!18}{95\!\cdots\!09}a^{6}+\frac{18\!\cdots\!20}{95\!\cdots\!09}a^{5}-\frac{59\!\cdots\!89}{95\!\cdots\!09}a^{4}+\frac{12\!\cdots\!32}{95\!\cdots\!09}a^{3}-\frac{34\!\cdots\!74}{95\!\cdots\!09}a^{2}+\frac{34\!\cdots\!52}{95\!\cdots\!09}a-\frac{14\!\cdots\!72}{95\!\cdots\!09}$, $\frac{981593169404}{95\!\cdots\!09}a^{11}-\frac{12104681441820}{95\!\cdots\!09}a^{10}+\frac{73713901423036}{95\!\cdots\!09}a^{9}-\frac{394066062789092}{95\!\cdots\!09}a^{8}+\frac{16\!\cdots\!84}{95\!\cdots\!09}a^{7}-\frac{69\!\cdots\!32}{95\!\cdots\!09}a^{6}+\frac{20\!\cdots\!18}{95\!\cdots\!09}a^{5}-\frac{66\!\cdots\!18}{95\!\cdots\!09}a^{4}+\frac{14\!\cdots\!50}{95\!\cdots\!09}a^{3}-\frac{39\!\cdots\!75}{95\!\cdots\!09}a^{2}+\frac{40\!\cdots\!62}{95\!\cdots\!09}a-\frac{16\!\cdots\!69}{95\!\cdots\!09}$, $\frac{520}{18983561}a^{11}-\frac{4104}{18983561}a^{10}+\frac{26160}{18983561}a^{9}-\frac{111610}{18983561}a^{8}+\frac{528600}{18983561}a^{7}-\frac{1737052}{18983561}a^{6}+\frac{5492940}{18983561}a^{5}-\frac{13763110}{18983561}a^{4}+\frac{37315380}{18983561}a^{3}-\frac{64520054}{18983561}a^{2}+\frac{103401340}{18983561}a-\frac{191579799}{18983561}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3407.79685773 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3407.79685773 \cdot 1332}{2\cdot\sqrt{396229730290715706724352}}\cr\approx \mathstrut & 0.221847024433 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.169.1, 4.0.78608.1, 6.6.140320193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | R | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(13\) | 13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |