Normalized defining polynomial
\( x^{12} - x^{11} + 16 x^{10} - 14 x^{9} + 237 x^{8} - 334 x^{7} + 3651 x^{6} - 4632 x^{5} + 53719 x^{4} - 61132 x^{3} + 69938 x^{2} - 73695 x + 83521 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39155492640500000000=2^{8}\cdot 5^{9}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{201884435} a^{9} + \frac{10348681}{201884435} a^{8} - \frac{76621279}{201884435} a^{7} + \frac{29967076}{201884435} a^{6} + \frac{6063491}{201884435} a^{5} - \frac{50729422}{201884435} a^{4} - \frac{76338487}{201884435} a^{3} + \frac{73021333}{201884435} a^{2} - \frac{61654462}{201884435} a + \frac{3594389}{11875555}$, $\frac{1}{3432035395} a^{10} - \frac{1}{3432035395} a^{9} + \frac{6277096}{3432035395} a^{8} + \frac{326938819}{686407079} a^{7} - \frac{1540537672}{3432035395} a^{6} + \frac{731072851}{3432035395} a^{5} + \frac{518626289}{3432035395} a^{4} - \frac{1479359218}{3432035395} a^{3} - \frac{1471961712}{3432035395} a^{2} - \frac{18890276}{40376887} a - \frac{3667666}{11875555}$, $\frac{1}{291723008575} a^{11} - \frac{7}{58344601715} a^{10} - \frac{239}{291723008575} a^{9} - \frac{20094283268}{291723008575} a^{8} - \frac{15062574091}{291723008575} a^{7} - \frac{2724550113}{11668920343} a^{6} - \frac{42995932249}{291723008575} a^{5} - \frac{126472895436}{291723008575} a^{4} - \frac{57521142507}{291723008575} a^{3} - \frac{2958397552}{17160176975} a^{2} - \frac{192675359}{1009422175} a + \frac{27261543}{59377775}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3317}{3432035395} a^{11} - \frac{53072}{3432035395} a^{10} + \frac{46438}{3432035395} a^{9} - \frac{786129}{3432035395} a^{8} + \frac{584232}{3432035395} a^{7} - \frac{12110367}{3432035395} a^{6} + \frac{15364344}{3432035395} a^{5} - \frac{178185923}{3432035395} a^{4} + \frac{11927932}{201884435} a^{3} - \frac{2845696712}{3432035395} a^{2} + \frac{169167}{2375111} a - \frac{958613}{11875555} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14744.5413899 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.10580.1 x3, \(\Q(\zeta_{5})\), 6.6.559682000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.12.8.1 | $x^{12} - 69 x^{9} + 1587 x^{6} - 12167 x^{3} + 372468371$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |