Normalized defining polynomial
\( x^{12} - x^{11} + 365 x^{10} - 365 x^{9} + 51325 x^{8} - 51325 x^{7} + 3475837 x^{6} - 3475837 x^{5} + 115343229 x^{4} - 115343229 x^{3} + 1681486717 x^{2} - 1681486717 x + 7946060669 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3731191473321768182792533=13^{11}\cdot 113^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1469=13\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1469}(1,·)$, $\chi_{1469}(903,·)$, $\chi_{1469}(1129,·)$, $\chi_{1469}(679,·)$, $\chi_{1469}(112,·)$, $\chi_{1469}(792,·)$, $\chi_{1469}(114,·)$, $\chi_{1469}(564,·)$, $\chi_{1469}(1016,·)$, $\chi_{1469}(1018,·)$, $\chi_{1469}(1244,·)$, $\chi_{1469}(1242,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{888213509} a^{7} - \frac{438521650}{888213509} a^{6} + \frac{196}{888213509} a^{5} + \frac{50084047}{888213509} a^{4} + \frac{10976}{888213509} a^{3} + \frac{327102956}{888213509} a^{2} + \frac{153664}{888213509} a + \frac{61499484}{888213509}$, $\frac{1}{888213509} a^{8} + \frac{224}{888213509} a^{6} - \frac{156382926}{888213509} a^{5} + \frac{15680}{888213509} a^{4} + \frac{311728085}{888213509} a^{3} + \frac{351232}{888213509} a^{2} - \frac{153748710}{888213509} a + \frac{1229312}{888213509}$, $\frac{1}{888213509} a^{9} + \frac{368980684}{888213509} a^{6} - \frac{28224}{888213509} a^{5} - \frac{248536335}{888213509} a^{4} - \frac{2107392}{888213509} a^{3} + \frac{296910393}{888213509} a^{2} - \frac{33191424}{888213509} a + \frac{435531728}{888213509}$, $\frac{1}{888213509} a^{10} - \frac{35280}{888213509} a^{6} + \frac{264757339}{888213509} a^{5} - \frac{3292800}{888213509} a^{4} - \frac{269689660}{888213509} a^{3} - \frac{82978560}{888213509} a^{2} - \frac{391160942}{888213509} a - \frac{309786624}{888213509}$, $\frac{1}{888213509} a^{11} + \frac{123845101}{888213509} a^{6} + \frac{3622080}{888213509} a^{5} + \frac{38819099}{888213509} a^{4} + \frac{304254720}{888213509} a^{3} + \frac{131217810}{888213509} a^{2} - \frac{217801758}{888213509} a - \frac{203806967}{888213509}$
Class group and class number
$C_{2}\times C_{51140}$, which has order $102280$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.28053493.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $113$ | 113.6.3.1 | $x^{6} - 226 x^{4} + 12769 x^{2} - 36072425$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 113.6.3.1 | $x^{6} - 226 x^{4} + 12769 x^{2} - 36072425$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |