Normalized defining polynomial
\( x^{12} + 195 x^{10} - 52 x^{9} + 20787 x^{8} - 3354 x^{7} + 943592 x^{6} - 589134 x^{5} + 3543930 x^{4} - 6234410 x^{3} + 456229527 x^{2} + 1474874154 x + 3926087841 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37176212245675331887703543808=2^{12}\cdot 3^{16}\cdot 7^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3276=2^{2}\cdot 3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3276}(1,·)$, $\chi_{3276}(811,·)$, $\chi_{3276}(2407,·)$, $\chi_{3276}(2857,·)$, $\chi_{3276}(1735,·)$, $\chi_{3276}(1933,·)$, $\chi_{3276}(1681,·)$, $\chi_{3276}(307,·)$, $\chi_{3276}(1849,·)$, $\chi_{3276}(2521,·)$, $\chi_{3276}(475,·)$, $\chi_{3276}(895,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{39} a^{8} - \frac{1}{39} a^{7} + \frac{1}{39} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{897} a^{9} - \frac{8}{897} a^{8} + \frac{14}{897} a^{7} - \frac{20}{897} a^{6} - \frac{19}{69} a^{5} + \frac{19}{69} a^{4} + \frac{16}{69} a^{3} - \frac{1}{23} a^{2} + \frac{8}{23} a + \frac{11}{23}$, $\frac{1}{897} a^{10} - \frac{4}{897} a^{8} - \frac{1}{39} a^{7} - \frac{16}{897} a^{6} + \frac{28}{69} a^{5} + \frac{7}{69} a^{4} + \frac{10}{69} a^{3} + \frac{6}{23} a - \frac{4}{23}$, $\frac{1}{103038253536858848146249454907731464263} a^{11} + \frac{675515072133754046839222303593892}{7926019502835296011249958069825497251} a^{10} + \frac{23439142483588401635259076326294334}{103038253536858848146249454907731464263} a^{9} + \frac{128326341140839339661194108842988525}{11448694837428760905138828323081273807} a^{8} + \frac{447799047217520771878681198365662246}{34346084512286282715416484969243821421} a^{7} - \frac{88495398616595005128780928297052371}{11448694837428760905138828323081273807} a^{6} + \frac{1369826104945501904863845439389052142}{7926019502835296011249958069825497251} a^{5} - \frac{2750353876358598810389158872879137290}{7926019502835296011249958069825497251} a^{4} + \frac{2640095527789625236041973774403556611}{7926019502835296011249958069825497251} a^{3} - \frac{32745372687498012879806247565115734}{880668833648366223472217563313944139} a^{2} - \frac{1202848082653566067296070157888756677}{2642006500945098670416652689941832417} a - \frac{532789015926427185090503281383053119}{2642006500945098670416652689941832417}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}\times C_{30}\times C_{390}$, which has order $1263600$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9116.238746847283 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.13689.2, 4.0.1722448.1, 6.6.2436053373.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.12.11.5 | $x^{12} - 3328$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |