Normalized defining polynomial
\( x^{12} + 195 x^{10} - 52 x^{9} + 20787 x^{8} + 25428 x^{7} + 942422 x^{6} + 204828 x^{5} + 4214691 x^{4} + 12075388 x^{3} + 427391367 x^{2} - 807602328 x + 3678675897 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37176212245675331887703543808=2^{12}\cdot 3^{16}\cdot 7^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3276=2^{2}\cdot 3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3276}(1,·)$, $\chi_{3276}(2659,·)$, $\chi_{3276}(673,·)$, $\chi_{3276}(841,·)$, $\chi_{3276}(811,·)$, $\chi_{3276}(589,·)$, $\chi_{3276}(307,·)$, $\chi_{3276}(643,·)$, $\chi_{3276}(2521,·)$, $\chi_{3276}(2941,·)$, $\chi_{3276}(1987,·)$, $\chi_{3276}(223,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{26} a^{6} - \frac{1}{2}$, $\frac{1}{26} a^{7} - \frac{1}{2} a$, $\frac{1}{312} a^{8} + \frac{1}{156} a^{7} + \frac{1}{312} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{312} a^{9} - \frac{1}{104} a^{7} - \frac{1}{52} a^{6} - \frac{1}{2} a^{5} + \frac{5}{24} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{18096} a^{10} - \frac{1}{696} a^{9} + \frac{7}{4524} a^{8} + \frac{1}{696} a^{7} + \frac{103}{18096} a^{6} - \frac{25}{87} a^{5} + \frac{227}{464} a^{4} - \frac{343}{696} a^{3} - \frac{21}{58} a^{2} - \frac{3}{232} a - \frac{3}{16}$, $\frac{1}{8255524250010437208804802433641872624} a^{11} + \frac{12642475649589197517897426505705}{8255524250010437208804802433641872624} a^{10} - \frac{3499080647573241775068451770254749}{4127762125005218604402401216820936312} a^{9} + \frac{79343883773699297270905048003561}{687960354167536434067066869470156052} a^{8} + \frac{8820442206176627704530169289314291}{2751841416670145736268267477880624208} a^{7} + \frac{46245469286562474275700830786771689}{2751841416670145736268267477880624208} a^{6} + \frac{308410580382165979656390456275245001}{635040326923879785292677110280144048} a^{5} + \frac{26889522878205771499804558770369317}{635040326923879785292677110280144048} a^{4} + \frac{104558712280671310858819384963704835}{317520163461939892646338555140072024} a^{3} - \frac{6804365276438996655706409986384985}{17640009081218882924796586396670668} a^{2} + \frac{1352753985260792969800525584589691}{211680108974626595097559036760048016} a - \frac{342323219998240305303677719865279}{7299314102573330865433070233105104}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{17862}$, which has order $1286064$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16557.868316895623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.13689.1, 4.0.1722448.1, 6.6.2436053373.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $7$ | 7.12.6.2 | $x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.3 | $x^{12} - 208$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |