Normalized defining polynomial
\( x^{12} - 6 x^{11} + 285 x^{10} - 1370 x^{9} + 30606 x^{8} - 114270 x^{7} + 1536671 x^{6} - 4215756 x^{5} + 37645887 x^{4} - 68396122 x^{3} + 416049516 x^{2} - 382535442 x + 1914274729 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3670536736379502144000000=2^{12}\cdot 3^{18}\cdot 5^{6}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4140=2^{2}\cdot 3^{2}\cdot 5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4140}(2209,·)$, $\chi_{4140}(1379,·)$, $\chi_{4140}(3589,·)$, $\chi_{4140}(1,·)$, $\chi_{4140}(2761,·)$, $\chi_{4140}(551,·)$, $\chi_{4140}(1931,·)$, $\chi_{4140}(2759,·)$, $\chi_{4140}(3311,·)$, $\chi_{4140}(4139,·)$, $\chi_{4140}(829,·)$, $\chi_{4140}(1381,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{23} a^{4} - \frac{2}{23} a^{3} - \frac{1}{23} a^{2} + \frac{2}{23} a + \frac{1}{23}$, $\frac{1}{23} a^{5} - \frac{5}{23} a^{3} + \frac{5}{23} a + \frac{2}{23}$, $\frac{1}{23} a^{6} - \frac{10}{23} a^{3} - \frac{11}{23} a + \frac{5}{23}$, $\frac{1}{23} a^{7} + \frac{3}{23} a^{3} + \frac{2}{23} a^{2} + \frac{2}{23} a + \frac{10}{23}$, $\frac{1}{529} a^{8} - \frac{4}{529} a^{7} + \frac{2}{529} a^{6} + \frac{8}{529} a^{5} - \frac{5}{529} a^{4} - \frac{8}{529} a^{3} + \frac{2}{529} a^{2} + \frac{4}{529} a + \frac{1}{529}$, $\frac{1}{529} a^{9} + \frac{9}{529} a^{7} - \frac{7}{529} a^{6} + \frac{4}{529} a^{5} - \frac{5}{529} a^{4} - \frac{191}{529} a^{3} + \frac{35}{529} a^{2} + \frac{247}{529} a + \frac{96}{529}$, $\frac{1}{18695294705221} a^{10} - \frac{5}{18695294705221} a^{9} + \frac{17530351989}{18695294705221} a^{8} - \frac{70121407926}{18695294705221} a^{7} - \frac{107579166639}{18695294705221} a^{6} - \frac{244676472590}{18695294705221} a^{5} + \frac{154564079307}{18695294705221} a^{4} + \frac{2726320653889}{18695294705221} a^{3} - \frac{1961042039230}{18695294705221} a^{2} - \frac{1327834899023}{18695294705221} a + \frac{1288607047433}{18695294705221}$, $\frac{1}{51054400756352167049} a^{11} + \frac{1365429}{51054400756352167049} a^{10} + \frac{20743136144991624}{51054400756352167049} a^{9} - \frac{21151988005825382}{51054400756352167049} a^{8} - \frac{842080697926463076}{51054400756352167049} a^{7} - \frac{1007817426406123029}{51054400756352167049} a^{6} + \frac{307708349307863258}{51054400756352167049} a^{5} - \frac{158643987538315559}{51054400756352167049} a^{4} - \frac{4731045379178028732}{51054400756352167049} a^{3} - \frac{10190689096632781168}{51054400756352167049} a^{2} + \frac{21694929205525572205}{51054400756352167049} a + \frac{9260692534944494477}{51054400756352167049}$
Class group and class number
$C_{20}\times C_{5320}$, which has order $106400$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.0008347866989 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-69}) \), \(\Q(\sqrt{-345}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{5}, \sqrt{-69})\), 6.6.820125.1, 6.0.15326915904.6, 6.0.1915864488000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $23$ | 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |