Normalized defining polynomial
\( x^{12} - 2 x^{11} + 549 x^{10} - 912 x^{9} + 127439 x^{8} - 169318 x^{7} + 16003958 x^{6} - 15988294 x^{5} + 1146467101 x^{4} - 767614604 x^{3} + 44414596734 x^{2} - 14988666216 x + 726950311489 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(365334900454961075024695296=2^{12}\cdot 3^{6}\cdot 13^{10}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4836=2^{2}\cdot 3\cdot 13\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4836}(1,·)$, $\chi_{4836}(4835,·)$, $\chi_{4836}(3719,·)$, $\chi_{4836}(745,·)$, $\chi_{4836}(2603,·)$, $\chi_{4836}(4463,·)$, $\chi_{4836}(1115,·)$, $\chi_{4836}(373,·)$, $\chi_{4836}(3721,·)$, $\chi_{4836}(2233,·)$, $\chi_{4836}(4091,·)$, $\chi_{4836}(1117,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{85948340259796119606241918949001290945} a^{11} + \frac{1149547678432931332817530403922069719}{17189668051959223921248383789800258189} a^{10} + \frac{3492462788706833762378333806901356420}{17189668051959223921248383789800258189} a^{9} + \frac{6305099222649211623871127980049480347}{17189668051959223921248383789800258189} a^{8} - \frac{4569836698516848729998747460445571692}{85948340259796119606241918949001290945} a^{7} - \frac{36679932647769526779318886489537231734}{85948340259796119606241918949001290945} a^{6} + \frac{6435766640372145849681320100964302349}{85948340259796119606241918949001290945} a^{5} - \frac{13961320192566173572308931839508758047}{85948340259796119606241918949001290945} a^{4} - \frac{8149041949352881018113185988829097701}{85948340259796119606241918949001290945} a^{3} - \frac{1870738496384970607383726729149067134}{85948340259796119606241918949001290945} a^{2} - \frac{20401038970220403143591585453159432426}{85948340259796119606241918949001290945} a - \frac{2057797858712330146569032902588322}{12379135857669036382866472554947615}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{10360}$, which has order $1326080$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.78403136265631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1209}) \), \(\Q(\sqrt{-93}) \), \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\sqrt{13}, \sqrt{-93})\), 6.0.19113735910464.2, 6.0.1470287377728.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |