Normalized defining polynomial
\( x^{12} - 264 x^{10} - 2200 x^{9} + 13068 x^{8} + 252648 x^{7} + 1788864 x^{6} + 9774864 x^{5} + 42937092 x^{4} + 127832144 x^{3} + 301295808 x^{2} + 517880352 x + 573460624 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36138557532047803300313486950662144=2^{24}\cdot 3^{18}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $758.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{4} + \frac{1}{3} a$, $\frac{1}{18} a^{5} + \frac{1}{18} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{216} a^{6} - \frac{1}{36} a^{5} - \frac{1}{18} a^{4} - \frac{1}{27} a^{3} - \frac{17}{36} a^{2} + \frac{7}{18} a + \frac{13}{54}$, $\frac{1}{216} a^{7} + \frac{1}{54} a^{4} - \frac{5}{36} a^{3} - \frac{1}{3} a^{2} + \frac{1}{54} a + \frac{2}{9}$, $\frac{1}{216} a^{8} + \frac{1}{54} a^{5} + \frac{1}{36} a^{4} + \frac{1}{54} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{1944} a^{9} - \frac{1}{648} a^{6} + \frac{7}{162} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{155}{486}$, $\frac{1}{3888} a^{10} + \frac{1}{648} a^{7} - \frac{1}{36} a^{5} + \frac{1}{324} a^{4} - \frac{5}{36} a^{3} + \frac{13}{36} a^{2} + \frac{68}{243} a + \frac{7}{18}$, $\frac{1}{12263126276110936353879312} a^{11} + \frac{95154433226190908369}{1114829661464630577625392} a^{10} + \frac{61470683534587672691}{278707415366157644406348} a^{9} - \frac{33712647181713413813}{92902471788719214802116} a^{8} + \frac{5549946377253398398}{23225617947179803700529} a^{7} + \frac{95933489718823732277}{46451235894359607401058} a^{6} + \frac{489485283052223999672}{23225617947179803700529} a^{5} - \frac{4140866578063314368557}{92902471788719214802116} a^{4} + \frac{1823530250876739694169}{92902471788719214802116} a^{3} - \frac{75365512168446067707161}{278707415366157644406348} a^{2} + \frac{20731641226834917440659}{69676853841539411101587} a - \frac{28362196650357739163695}{139353707683078822203174}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1861272902040 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.1 | $x^{6} + 3 x^{4} + 15$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.18.3 | $x^{11} + 22 x^{8} + 11$ | $11$ | $1$ | $18$ | $C_{11}:C_5$ | $[9/5]_{5}$ |