Properties

Label 12.0.36138557532...2144.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 3^{18}\cdot 11^{18}$
Root discriminant $758.28$
Ramified primes $2, 3, 11$
Class number $24$ (GRH)
Class group $[2, 2, 6]$ (GRH)
Galois group $\PSL(2,11)$ (as 12T179)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![573460624, 517880352, 301295808, 127832144, 42937092, 9774864, 1788864, 252648, 13068, -2200, -264, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 264*x^10 - 2200*x^9 + 13068*x^8 + 252648*x^7 + 1788864*x^6 + 9774864*x^5 + 42937092*x^4 + 127832144*x^3 + 301295808*x^2 + 517880352*x + 573460624)
 
gp: K = bnfinit(x^12 - 264*x^10 - 2200*x^9 + 13068*x^8 + 252648*x^7 + 1788864*x^6 + 9774864*x^5 + 42937092*x^4 + 127832144*x^3 + 301295808*x^2 + 517880352*x + 573460624, 1)
 

Normalized defining polynomial

\( x^{12} - 264 x^{10} - 2200 x^{9} + 13068 x^{8} + 252648 x^{7} + 1788864 x^{6} + 9774864 x^{5} + 42937092 x^{4} + 127832144 x^{3} + 301295808 x^{2} + 517880352 x + 573460624 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(36138557532047803300313486950662144=2^{24}\cdot 3^{18}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $758.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{4} + \frac{1}{3} a$, $\frac{1}{18} a^{5} + \frac{1}{18} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{216} a^{6} - \frac{1}{36} a^{5} - \frac{1}{18} a^{4} - \frac{1}{27} a^{3} - \frac{17}{36} a^{2} + \frac{7}{18} a + \frac{13}{54}$, $\frac{1}{216} a^{7} + \frac{1}{54} a^{4} - \frac{5}{36} a^{3} - \frac{1}{3} a^{2} + \frac{1}{54} a + \frac{2}{9}$, $\frac{1}{216} a^{8} + \frac{1}{54} a^{5} + \frac{1}{36} a^{4} + \frac{1}{54} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{1944} a^{9} - \frac{1}{648} a^{6} + \frac{7}{162} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{155}{486}$, $\frac{1}{3888} a^{10} + \frac{1}{648} a^{7} - \frac{1}{36} a^{5} + \frac{1}{324} a^{4} - \frac{5}{36} a^{3} + \frac{13}{36} a^{2} + \frac{68}{243} a + \frac{7}{18}$, $\frac{1}{12263126276110936353879312} a^{11} + \frac{95154433226190908369}{1114829661464630577625392} a^{10} + \frac{61470683534587672691}{278707415366157644406348} a^{9} - \frac{33712647181713413813}{92902471788719214802116} a^{8} + \frac{5549946377253398398}{23225617947179803700529} a^{7} + \frac{95933489718823732277}{46451235894359607401058} a^{6} + \frac{489485283052223999672}{23225617947179803700529} a^{5} - \frac{4140866578063314368557}{92902471788719214802116} a^{4} + \frac{1823530250876739694169}{92902471788719214802116} a^{3} - \frac{75365512168446067707161}{278707415366157644406348} a^{2} + \frac{20731641226834917440659}{69676853841539411101587} a - \frac{28362196650357739163695}{139353707683078822203174}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1861272902040 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,11)$ (as 12T179):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 11 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
$3$3.6.9.1$x^{6} + 3 x^{4} + 15$$6$$1$$9$$C_6$$[2]_{2}$
3.6.9.1$x^{6} + 3 x^{4} + 15$$6$$1$$9$$C_6$$[2]_{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.11.18.3$x^{11} + 22 x^{8} + 11$$11$$1$$18$$C_{11}:C_5$$[9/5]_{5}$