Normalized defining polynomial
\( x^{12} - 4 x^{11} + 34 x^{10} - 96 x^{9} + 487 x^{8} - 1060 x^{7} + 3402 x^{6} - 5164 x^{5} + 10378 x^{4} - 10924 x^{3} + 38696 x^{2} - 30344 x + 53857 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36099543110378323968=2^{33}\cdot 3^{6}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(336=2^{4}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{336}(1,·)$, $\chi_{336}(197,·)$, $\chi_{336}(193,·)$, $\chi_{336}(169,·)$, $\chi_{336}(29,·)$, $\chi_{336}(289,·)$, $\chi_{336}(221,·)$, $\chi_{336}(149,·)$, $\chi_{336}(25,·)$, $\chi_{336}(121,·)$, $\chi_{336}(317,·)$, $\chi_{336}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{20379747} a^{10} + \frac{2080679}{20379747} a^{9} - \frac{1317103}{20379747} a^{8} - \frac{488922}{6793249} a^{7} - \frac{709}{30463} a^{6} - \frac{624140}{6793249} a^{5} + \frac{4974806}{20379747} a^{4} + \frac{2834665}{20379747} a^{3} + \frac{3156852}{6793249} a^{2} + \frac{2251951}{6793249} a - \frac{6086281}{20379747}$, $\frac{1}{2753986317047283} a^{11} + \frac{14709590}{917995439015761} a^{10} + \frac{94527342907752}{917995439015761} a^{9} + \frac{138289553802995}{2753986317047283} a^{8} - \frac{100494336749768}{917995439015761} a^{7} + \frac{29041166148736}{917995439015761} a^{6} + \frac{162803203708201}{2753986317047283} a^{5} - \frac{53406270951329}{917995439015761} a^{4} + \frac{323752620055344}{917995439015761} a^{3} + \frac{327302348674954}{2753986317047283} a^{2} + \frac{230444022118316}{917995439015761} a - \frac{368477815253402}{917995439015761}$
Class group and class number
$C_{194}$, which has order $194$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.150027194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), 4.0.18432.2, 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.374 | $x^{12} + 28 x^{10} - 6 x^{8} + 40 x^{6} - 56 x^{4} - 32 x^{2} - 56$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |