Normalized defining polynomial
\( x^{12} - x^{11} - x^{10} + 25 x^{9} - 15 x^{8} - 86 x^{7} + 141 x^{6} + 76 x^{5} - 365 x^{4} + 195 x^{3} + 244 x^{2} - 384 x + 181 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(357012500000000=2^{8}\cdot 5^{11}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{393400566031} a^{11} + \frac{183495137350}{393400566031} a^{10} - \frac{187463901697}{393400566031} a^{9} - \frac{50652461603}{393400566031} a^{8} - \frac{108509779951}{393400566031} a^{7} - \frac{136388228665}{393400566031} a^{6} - \frac{124947682430}{393400566031} a^{5} + \frac{111722335425}{393400566031} a^{4} - \frac{150041388141}{393400566031} a^{3} - \frac{10987473747}{35763687821} a^{2} + \frac{165665217720}{393400566031} a + \frac{137372934047}{393400566031}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{119871374}{35763687821} a^{11} + \frac{353555850}{35763687821} a^{10} + \frac{29772006}{35763687821} a^{9} + \frac{2503798120}{35763687821} a^{8} + \frac{8735221696}{35763687821} a^{7} - \frac{1216132452}{35763687821} a^{6} - \frac{20263343352}{35763687821} a^{5} + \frac{17596753639}{35763687821} a^{4} + \frac{44990275748}{35763687821} a^{3} - \frac{33083709178}{35763687821} a^{2} - \frac{41263626762}{35763687821} a + \frac{43979520283}{35763687821} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1008.69816141 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times S_3$ (as 12T11):
| A solvable group of order 24 |
| The 12 conjugacy class representatives for $S_3 \times C_4$ |
| Character table for $S_3 \times C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.1300.1, \(\Q(\zeta_{5})\), 6.6.8450000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
| $5$ | 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |