Normalized defining polynomial
\( x^{12} + 780 x^{10} + 226980 x^{8} + 29335800 x^{6} + 1451174400 x^{4} + 4672512000 x^{2} + 3833856000 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(355491663986814578735616000000000=2^{18}\cdot 3^{18}\cdot 5^{9}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $515.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1,·)$, $\chi_{4680}(2401,·)$, $\chi_{4680}(3721,·)$, $\chi_{4680}(649,·)$, $\chi_{4680}(1997,·)$, $\chi_{4680}(4253,·)$, $\chi_{4680}(49,·)$, $\chi_{4680}(2333,·)$, $\chi_{4680}(4373,·)$, $\chi_{4680}(4489,·)$, $\chi_{4680}(2477,·)$, $\chi_{4680}(3677,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{20} a^{4}$, $\frac{1}{20} a^{5}$, $\frac{1}{840} a^{6} - \frac{1}{7}$, $\frac{1}{3360} a^{7} - \frac{1}{40} a^{5} + \frac{1}{8} a^{3} + \frac{13}{28} a$, $\frac{1}{134400} a^{8} - \frac{1}{6720} a^{6} + \frac{1}{320} a^{4} - \frac{3}{224} a^{2} + \frac{1}{7}$, $\frac{1}{537600} a^{9} - \frac{1}{26880} a^{7} - \frac{31}{1280} a^{5} - \frac{115}{896} a^{3} + \frac{1}{28} a$, $\frac{1}{861291110400} a^{10} - \frac{732269}{215322777600} a^{8} + \frac{509191}{14354851840} a^{6} - \frac{142088367}{7177425920} a^{4} - \frac{25752}{1401841} a^{2} - \frac{427248}{1401841}$, $\frac{1}{3445164441600} a^{11} - \frac{732269}{861291110400} a^{9} + \frac{509191}{57419407360} a^{7} - \frac{500959663}{28709703680} a^{5} - \frac{1453345}{11214728} a^{3} + \frac{974593}{5607364} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{1467420}$, which has order $11739360$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60875.97226910356 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 3.3.13689.2, 4.0.158184000.1, 6.6.304506671625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.12.18.88 | $x^{12} + 21 x^{11} + 21 x^{10} - 39 x^{9} + 9 x^{8} - 36 x^{7} - 3 x^{6} + 18 x^{5} + 27 x^{4} - 27 x - 36$ | $6$ | $2$ | $18$ | $C_{12}$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.9.4 | $x^{12} + 30 x^{8} + 275 x^{4} + 1000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $13$ | 13.12.11.9 | $x^{12} + 416$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |