Normalized defining polynomial
\( x^{12} - 6 x^{11} + 13 x^{10} - 10 x^{9} - 21 x^{8} + 78 x^{7} - 73 x^{6} - 30 x^{5} + 169 x^{4} - 210 x^{3} - 101 x^{2} + 190 x + 202 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3493441689358336=2^{12}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8744} a^{10} - \frac{5}{8744} a^{9} + \frac{263}{8744} a^{8} - \frac{511}{4372} a^{7} + \frac{657}{2186} a^{6} - \frac{541}{1093} a^{5} + \frac{1195}{8744} a^{4} + \frac{3641}{8744} a^{3} - \frac{1877}{8744} a^{2} - \frac{62}{1093} a - \frac{249}{4372}$, $\frac{1}{8927624} a^{11} + \frac{505}{8927624} a^{10} - \frac{2287}{8927624} a^{9} + \frac{33277}{2231906} a^{8} - \frac{335888}{1115953} a^{7} - \frac{235}{1115953} a^{6} + \frac{2253355}{8927624} a^{5} - \frac{2727117}{8927624} a^{4} - \frac{3968471}{8927624} a^{3} - \frac{1471327}{4463812} a^{2} + \frac{253635}{4463812} a - \frac{101}{2231906}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{43}{4372} a^{10} + \frac{215}{4372} a^{9} - \frac{379}{4372} a^{8} + \frac{113}{2186} a^{7} + \frac{167}{1093} a^{6} - \frac{473}{1093} a^{5} + \frac{1079}{4372} a^{4} + \frac{829}{4372} a^{3} - \frac{4543}{4372} a^{2} + \frac{960}{1093} a + \frac{1963}{2186} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1160.75122176 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4$ (as 12T7):
| A solvable group of order 24 |
| The 8 conjugacy class representatives for $A_4 \times C_2$ |
| Character table for $A_4 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.961.1, 6.4.3694084.1, 6.0.59105344.1, 6.2.14776336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |