Normalized defining polynomial
\( x^{12} - 3 x^{11} + 9 x^{10} + 46 x^{9} - 48 x^{8} + 312 x^{7} + 371 x^{6} + 171 x^{5} - 3597 x^{4} + 14402 x^{3} + 31740 x^{2} - 122784 x + 161344 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34896906600120140625=3^{18}\cdot 5^{6}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(64,·)$, $\chi_{315}(1,·)$, $\chi_{315}(86,·)$, $\chi_{315}(134,·)$, $\chi_{315}(71,·)$, $\chi_{315}(74,·)$, $\chi_{315}(11,·)$, $\chi_{315}(149,·)$, $\chi_{315}(214,·)$, $\chi_{315}(151,·)$, $\chi_{315}(184,·)$, $\chi_{315}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{28} a^{10} + \frac{1}{14} a^{9} + \frac{1}{14} a^{8} - \frac{3}{14} a^{7} - \frac{3}{14} a^{5} + \frac{5}{28} a^{4} - \frac{5}{14} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7}$, $\frac{1}{1981206029278549930976} a^{11} + \frac{18544455878041468681}{1981206029278549930976} a^{10} - \frac{66982657114331110123}{1981206029278549930976} a^{9} + \frac{14034957908640378931}{141514716377039280784} a^{8} + \frac{814722483294777627}{247650753659818741372} a^{7} + \frac{11707208202872973071}{247650753659818741372} a^{6} - \frac{239254137174684718701}{1981206029278549930976} a^{5} - \frac{164851330536872190241}{1981206029278549930976} a^{4} + \frac{594463227251118347175}{1981206029278549930976} a^{3} - \frac{374500452770563759813}{990603014639274965488} a^{2} + \frac{59256883824963400761}{495301507319637482744} a - \frac{47742441752070661837}{123825376829909370686}$
Class group and class number
$C_{111}$, which has order $111$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{609346815}{52587848853728} a^{11} + \frac{4426953735}{52587848853728} a^{10} - \frac{2028180421}{52587848853728} a^{9} + \frac{38454815679}{26293924426864} a^{8} + \frac{33628350603}{6573481106716} a^{7} + \frac{83046777159}{6573481106716} a^{6} + \frac{2500790195277}{52587848853728} a^{5} + \frac{5092840088193}{52587848853728} a^{4} + \frac{5958649096985}{52587848853728} a^{3} - \frac{4947324852735}{26293924426864} a^{2} + \frac{13038188944047}{13146962213432} a + \frac{7505544281453}{3286740553358} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7692.76761765 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), 3.3.3969.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 6.0.47258883.2, 6.6.1969120125.1, 6.0.5907360375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.51 | $x^{12} + 27 x^{11} + 15 x^{10} + 36 x^{9} - 36 x^{8} - 18 x^{7} + 21 x^{6} - 18 x^{4} + 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |