Properties

Label 12.0.34896906600...0625.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{18}\cdot 5^{6}\cdot 7^{8}$
Root discriminant $42.52$
Ramified primes $3, 5, 7$
Class number $111$
Class group $[111]$
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![161344, -122784, 31740, 14402, -3597, 171, 371, 312, -48, 46, 9, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 9*x^10 + 46*x^9 - 48*x^8 + 312*x^7 + 371*x^6 + 171*x^5 - 3597*x^4 + 14402*x^3 + 31740*x^2 - 122784*x + 161344)
 
gp: K = bnfinit(x^12 - 3*x^11 + 9*x^10 + 46*x^9 - 48*x^8 + 312*x^7 + 371*x^6 + 171*x^5 - 3597*x^4 + 14402*x^3 + 31740*x^2 - 122784*x + 161344, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{11} + 9 x^{10} + 46 x^{9} - 48 x^{8} + 312 x^{7} + 371 x^{6} + 171 x^{5} - 3597 x^{4} + 14402 x^{3} + 31740 x^{2} - 122784 x + 161344 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(34896906600120140625=3^{18}\cdot 5^{6}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(315=3^{2}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{315}(64,·)$, $\chi_{315}(1,·)$, $\chi_{315}(86,·)$, $\chi_{315}(134,·)$, $\chi_{315}(71,·)$, $\chi_{315}(74,·)$, $\chi_{315}(11,·)$, $\chi_{315}(149,·)$, $\chi_{315}(214,·)$, $\chi_{315}(151,·)$, $\chi_{315}(184,·)$, $\chi_{315}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{28} a^{10} + \frac{1}{14} a^{9} + \frac{1}{14} a^{8} - \frac{3}{14} a^{7} - \frac{3}{14} a^{5} + \frac{5}{28} a^{4} - \frac{5}{14} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7}$, $\frac{1}{1981206029278549930976} a^{11} + \frac{18544455878041468681}{1981206029278549930976} a^{10} - \frac{66982657114331110123}{1981206029278549930976} a^{9} + \frac{14034957908640378931}{141514716377039280784} a^{8} + \frac{814722483294777627}{247650753659818741372} a^{7} + \frac{11707208202872973071}{247650753659818741372} a^{6} - \frac{239254137174684718701}{1981206029278549930976} a^{5} - \frac{164851330536872190241}{1981206029278549930976} a^{4} + \frac{594463227251118347175}{1981206029278549930976} a^{3} - \frac{374500452770563759813}{990603014639274965488} a^{2} + \frac{59256883824963400761}{495301507319637482744} a - \frac{47742441752070661837}{123825376829909370686}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{111}$, which has order $111$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{609346815}{52587848853728} a^{11} + \frac{4426953735}{52587848853728} a^{10} - \frac{2028180421}{52587848853728} a^{9} + \frac{38454815679}{26293924426864} a^{8} + \frac{33628350603}{6573481106716} a^{7} + \frac{83046777159}{6573481106716} a^{6} + \frac{2500790195277}{52587848853728} a^{5} + \frac{5092840088193}{52587848853728} a^{4} + \frac{5958649096985}{52587848853728} a^{3} - \frac{4947324852735}{26293924426864} a^{2} + \frac{13038188944047}{13146962213432} a + \frac{7505544281453}{3286740553358} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7692.76761765 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), 3.3.3969.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 6.0.47258883.2, 6.6.1969120125.1, 6.0.5907360375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}$ R R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.12.18.51$x^{12} + 27 x^{11} + 15 x^{10} + 36 x^{9} - 36 x^{8} - 18 x^{7} + 21 x^{6} - 18 x^{4} + 27 x^{2} - 27 x + 36$$6$$2$$18$$C_6\times C_2$$[2]_{2}^{2}$
$5$5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.6.4.1$x^{6} + 35 x^{3} + 441$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.1$x^{6} + 35 x^{3} + 441$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$